使用read_html爬取网页表哥,简单又强大的pandas爬虫 利用pandas库的read_html()方法爬取网页表格型数据...

本文主要是介绍使用read_html爬取网页表哥,简单又强大的pandas爬虫 利用pandas库的read_html()方法爬取网页表格型数据...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、简介

一般的爬虫套路无非是发送请求、获取响应、解析网页、提取数据、保存数据等步骤。构造请求主要用到requests库,定位提取数据用的比较多的有xpath和正则匹配。一个完整的爬虫,代码量少则几十行,多则百来行,对于新手来说学习成本还是比较高的。

谈及pandas的read.xxx系列的函数,常用的读取数据方法为:pd.read_csv() 和 pd.read_excel(),而 pd.read_html() 这个方法虽然少用,但它的功能非常强大,特别是用于抓取Table表格型数据时,简直是个神器。无需掌握正则表达式或者xpath等工具,短短的几行代码就可以将网页数据快速抓取下来并保存到本地。

二、原理

pandas适合抓取Table表格型数据,先了解一下具有Table表格型数据结构的网页,举例如下:

a018358d8b2e33c73cf7624a16a5c710.png

58f0accf4661521af726faa2053e7894.png

用Chrome浏览器查看网页HTML结构,会发现Table表格型数据有一些共同点,大致的网页结构如下表示。

...

...............

...

......

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

网页具有以上结构,我们可以尝试用pandas的 pd.read_html() 方法来直接获取数据。

L3Byb3h5L2h0dHBzL2ltZy1ibG9nLmNzZG5pbWcuY24vMjAyMDA4MjkyMTEwNTYzMjEucG5nI3BpY19jZW50ZXI=.jpg

pd.read_html() 的一些主要参数

io:接收网址、文件、字符串

header:指定列名所在的行

encoding:The encoding used to decode the web page

attrs:传递一个字典,用其中的属性筛选出特定的表格

parse_dates:解析日期

三、爬取实战

实例1

import pandas as pd

dates = pd.date_range('20190101', '20191201', freq='MS').strftime('%Y%m') # 构造出日期序列 便于之后构造url

for i in range(len(dates)):

df = pd.read_html(f'http://www.tianqihoubao.com/aqi/chengdu-{dates[i]}.html', encoding='gbk', header=0)[0]

if i == 0:

df.to_csv('2019年成都空气质量数据.csv', mode='a+', index=False) # 追加写入

i += 1

else:

df.to_csv('2019年成都空气质量数据.csv', mode='a+', index=False, header=False)

1

2

3

4

5

6

7

8

9

10

9行代码搞定,爬取速度也很快。

查看保存下来的数据

7ba94f00e3d7ddd49b047577c95fe1c2.png

实例2

import pandas as pd

df = pd.DataFrame()

for i in range(1, 26):

url = f'http://vip.stock.finance.sina.com.cn/q/go.php/vComStockHold/kind/jjzc/index.phtml?p={i}'

df = pd.concat([df, pd.read_html(url)[0].iloc[::,:-1]]) # 合并DataFrame 不要明细那一列

df.to_csv('新浪财经基金重仓股数据.csv', encoding='utf-8', index=False)

1

2

3

4

5

6

7

6行代码搞定,爬取速度也很快。

查看保存下来的数据:

90bd7d78723a142d57573d9f8e62510d.png

之后在爬取一些小型数据时,只要遇到这种Table表格型数据,就可以先试试 pd.read_html() 大法。

这篇关于使用read_html爬取网页表哥,简单又强大的pandas爬虫 利用pandas库的read_html()方法爬取网页表格型数据...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/286445

相关文章

C# 比较两个list 之间元素差异的常用方法

《C#比较两个list之间元素差异的常用方法》:本文主要介绍C#比较两个list之间元素差异,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. 使用Except方法2. 使用Except的逆操作3. 使用LINQ的Join,GroupJoin

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

一文详解Git中分支本地和远程删除的方法

《一文详解Git中分支本地和远程删除的方法》在使用Git进行版本控制的过程中,我们会创建多个分支来进行不同功能的开发,这就容易涉及到如何正确地删除本地分支和远程分支,下面我们就来看看相关的实现方法吧... 目录技术背景实现步骤删除本地分支删除远程www.chinasem.cn分支同步删除信息到其他机器示例步骤

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文