An Early Evaluation of GPT-4V(ision)

2023-10-27 06:01
文章标签 gpt 4v evaluation early ision

本文主要是介绍An Early Evaluation of GPT-4V(ision),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文是LLM系列文章,针对《An Early Evaluation of GPT-4V(ision)》的翻译。

GPT-4V的早期评估

  • 摘要
  • 1 引言
  • 2 视觉理解
  • 3 语言理解
  • 4 视觉谜题解决
  • 5 对其他模态的理解
  • 6 结论

摘要

在本文中,我们评估了GPT-4V的不同能力,包括视觉理解、语言理解、视觉解谜以及对深度、热、视频和音频等其他模式的理解。为了评估GPT-4V的性能,我们手动构建656个测试实例,并仔细评估GPT-4V的结果。研究结果的亮点如下:(1)GPT-4V在以英语视觉为中心的基准测试中表现出令人印象深刻的性能,但无法识别图像中的简单中文文本;(2) GPT-4V在回答与性别、种族和年龄等敏感特征相关的问题时表现出不一致的拒绝行为;(3) GPT-4V在包括一般语言理解基准和视觉常识知识评估基准在内的语言理解任务上获得比GPT-4(API)更差的结果;(4) 小样本提示可以提高GPT-4V在视觉理解和语言理解方面的表现;(5) GPT-4V努力寻找两张相似图像之间的细微差别,并解决简单的数学图片难题;(6)GPT-4V在与图像类似的模式(如视频和热)的任务上表现出了非凡的性能。我们的实验结果揭示了GPT-4V的能力和局限性,我们希望我们的论文能为GPT-4V的应用和研究提供一些见解。

1 引言

2 视觉理解

3 语言理解

4 视觉谜题解决

5 对其他模态的理解

6 结论

在本文中,我们定量研究了GPT-4V在各种任务中的性能。根据研究结果,我们发现GPT-4V虽然在标准的以英语为中心的视觉基准上取得了很高的性能,但仍然不能进行中文文本识别。这一观察结果表明,有必要对中国基准进行进一步深入评估,以衡量GPT-4V的能力。我们还观察到,GPT-4V即使具有很强的视觉理解能力和数学问题解决能力,也无法解决简单的数学图片谜题。原因可能是GPT-4V没有很好地推广到这个领域。另一个问题是,GPT-4V在回答与身份和性别、种族和年龄等敏感特征有关的问题时表现出不一致的拒绝行为。这个问题可能会导致GPT-4V的性能明显下降,在未来的研究中应该小心处理。
至于局限性,我们承认GPT4V的性能可能会因采用不同的提示方法而有所不同。例如,更具体的指令和更好的示例将提高其性能。我们希望在未来的工作中探索利用其他高级提示,如思维链提示。我们也承认,每个任务的更多测试实例可以使估计结果更准确,但由于劳动力成本高,我们只对部分实例进行了采样。
尽管如此,这还是首次尝试定量研究GPT-4V在各种任务中的性能。在我们的研究中,我们揭示了GPT-4V的优势和局限性。我们希望我们的研究能够为未来的研究和应用提供见解。

这篇关于An Early Evaluation of GPT-4V(ision)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/285971

相关文章

4B参数秒杀GPT-3.5:MiniCPM 3.0惊艳登场!

​ 面壁智能 在 AI 的世界里,总有那么几个时刻让人惊叹不已。面壁智能推出的 MiniCPM 3.0,这个仅有4B参数的"小钢炮",正在以惊人的实力挑战着 GPT-3.5 这个曾经的AI巨人。 MiniCPM 3.0 MiniCPM 3.0 MiniCPM 3.0 目前的主要功能有: 长上下文功能:原生支持 32k 上下文长度,性能完美。我们引入了

GPT系列之:GPT-1,GPT-2,GPT-3详细解读

一、GPT1 论文:Improving Language Understanding by Generative Pre-Training 链接:https://cdn.openai.com/research-covers/languageunsupervised/language_understanding_paper.pdf 启发点:生成loss和微调loss同时作用,让下游任务来适应预训

速通GPT-3:Language Models are Few-Shot Learners全文解读

文章目录 论文实验总览1. 任务设置与测试策略2. 任务类别3. 关键实验结果4. 数据污染与实验局限性5. 总结与贡献 Abstract1. 概括2. 具体分析3. 摘要全文翻译4. 为什么不需要梯度更新或微调⭐ Introduction1. 概括2. 具体分析3. 进一步分析 Approach1. 概括2. 具体分析3. 进一步分析 Results1. 概括2. 具体分析2.1 语言模型

MiniCPM-V: A GPT-4V Level MLLM on Your Phone

MiniCPM-V: A GPT-4V Level MLLM on Your Phone 研究背景和动机 现有的MLLM通常需要大量的参数和计算资源,限制了其在实际应用中的范围。大部分MLLM需要部署在高性能云服务器上,这种高成本和高能耗的特点,阻碍了其在移动设备、离线和隐私保护场景中的应用。 文章主要贡献: 提出了MiniCPM-V系列模型,能在移动端设备上部署的MLLM。 性能优越:

OpenAI澄清:“GPT Next”不是新模型。

不,”GPT Next” 并不是OpenAI的下一个重要项目。 本周早些时候,OpenAI 日本业务的负责人长崎忠男在日本 KDDI 峰会上分享了一场演讲,似乎在暗示一个名为 “GPT Next” 的新模型即将出现。 但OpenAI的一位发言人已向Mashable证实,幻灯片中用引号括起来的”GPT Next”一词只是一个假设性占位符,旨在表明OpenAI的模型如何随着时间呈指数级进化。发言人

AI跟踪报道第55期-新加坡内哥谈技术-本周AI新闻: GPT NEXT (x100倍)即将在2024推出

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行! 订阅:https://rengongzhineng.io/ 点击下面视频观看在B站本周AI更新: B 站 链接 观看: 本周AI

什么是GPT-3的自回归架构?为什么GPT-3无需梯度更新和微调

文章目录 知识回顾GPT-3的自回归架构何为自回归架构为什么架构会影响任务表现自回归架构的局限性与双向模型的对比小结 为何无需梯度更新和微调为什么不需要怎么做到不需要 🍃作者介绍:双非本科大四网络工程专业在读,阿里云专家博主,专注于Java领域学习,擅长web应用开发,目前开始人工智能领域相关知识的学习 🦅个人主页:@逐梦苍穹 📕所属专栏:人工智能 🌻gitee地址:x

win10 gpt分区+uefi引导 卸载双系统ubuntu

1、首先暴力卸载ubuntu 在win10里面磁盘管理中找到对应的linux磁盘分区 删除卷OK 2、重启 出现下面(根据机型不同界面可能不一样 ) 3、exit 退出grub引导 进入uefi引导  选择win10引导项 (当然你要是一直按着进入bios boot的那个按键的话 也不用看第二步了 直接选择windows启动项进去 dell的话是F12) 4、进入

Java8对接三方流式接口,并实时输出(GPT)

Java对接模型流式接口,并流式输出 核心依赖 <dependency><groupId>com.alibaba</groupId><artifactId>fastjson</artifactId><version>2.0.33</version></dependency><dependency><groupId>org.springframework.boot</groupId><a

AutosarMCAL开发——基于EB Gpt驱动

目录 1.Gpt原理2.EB配置以及接口应用2.1 EB配置2.2 接口应用 3.总结 1.Gpt原理 autosar GPT模块(General Purpose Timer,通用定时器)主要用于汽车ECU中的时间测量、计数和产生定时中断。它支持单次性和周期性定时器,可以在达到预设的定时值时通过中断通知系统,从而实现对时间敏感任务的精确控制。GPT模块利用微处理器的时钟单元提供精