BadNets:基于数据投毒的模型后门攻击代码(Pytorch)以MNIST为例

2023-10-25 22:15

本文主要是介绍BadNets:基于数据投毒的模型后门攻击代码(Pytorch)以MNIST为例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

加载数据集

# 载入MNIST训练集和测试集
transform = transforms.Compose([transforms.ToTensor(),])
train_loader = datasets.MNIST(root='data',transform=transform,train=True,download=True)
test_loader = datasets.MNIST(root='data',transform=transform,train=False)
# 可视化样本 大小28×28
plt.imshow(train_loader.data[0].numpy())
plt.show()

在这里插入图片描述

在训练集中植入5000个中毒样本

# 在训练集中植入5000个中毒样本
for i in range(5000):train_loader.data[i][26][26] = 255train_loader.data[i][25][25] = 255train_loader.data[i][24][26] = 255train_loader.data[i][26][24] = 255train_loader.targets[i] = 9  # 设置中毒样本的目标标签为9
# 可视化中毒样本
plt.imshow(train_loader.data[0].numpy())
plt.show()

在这里插入图片描述

训练模型

data_loader_train = torch.utils.data.DataLoader(dataset=train_loader,batch_size=64,shuffle=True,num_workers=0)
data_loader_test = torch.utils.data.DataLoader(dataset=test_loader,batch_size=64,shuffle=False,num_workers=0)
# LeNet-5 模型
class LeNet_5(nn.Module):def __init__(self):super(LeNet_5, self).__init__()self.conv1 = nn.Conv2d(1, 6, 5, 1)self.conv2 = nn.Conv2d(6, 16, 5, 1)self.fc1 = nn.Linear(16 * 4 * 4, 120)self.fc2 = nn.Linear(120, 84)self.fc3 = nn.Linear(84, 10)def forward(self, x):x = F.max_pool2d(self.conv1(x), 2, 2)x = F.max_pool2d(self.conv2(x), 2, 2)x = x.view(-1, 16 * 4 * 4)x = self.fc1(x)x = self.fc2(x)x = self.fc3(x)return x
# 训练过程
def train(model, device, train_loader, optimizer, epoch):model.train()for idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)pred = model(data)loss = F.cross_entropy(pred, target)optimizer.zero_grad()loss.backward()optimizer.step()if idx % 100 == 0:print("Train Epoch: {}, iterantion: {}, Loss: {}".format(epoch, idx, loss.item()))torch.save(model.state_dict(), 'badnets.pth')# 测试过程
def test(model, device, test_loader):model.load_state_dict(torch.load('badnets.pth'))model.eval()total_loss = 0correct = 0with torch.no_grad():for idx, (data, target) in enumerate(test_loader):data, target = data.to(device), target.to(device)output = model(data)total_loss += F.cross_entropy(output, target, reduction="sum").item()pred = output.argmax(dim=1)correct += pred.eq(target.view_as(pred)).sum().item()total_loss /= len(test_loader.dataset)acc = correct / len(test_loader.dataset) * 100print("Test Loss: {}, Accuracy: {}".format(total_loss, acc))
def main():# 超参数num_epochs = 10lr = 0.01momentum = 0.5model = LeNet_5().to(device)optimizer = torch.optim.SGD(model.parameters(),lr=lr,momentum=momentum)# 在干净训练集上训练,在干净测试集上测试# acc=98.29%# 在带后门数据训练集上训练,在干净测试集上测试# acc=98.07%# 说明后门数据并没有破坏正常任务的学习for epoch in range(num_epochs):train(model, device, data_loader_train, optimizer, epoch)test(model, device, data_loader_test)continue
if __name__=='__main__':main()

测试攻击成功率

# 攻击成功率 99.66%  对测试集中所有图像都注入后门for i in range(len(test_loader)):test_loader.data[i][26][26] = 255test_loader.data[i][25][25] = 255test_loader.data[i][24][26] = 255test_loader.data[i][26][24] = 255test_loader.targets[i] = 9data_loader_test2 = torch.utils.data.DataLoader(dataset=test_loader,batch_size=64,shuffle=False,num_workers=0)test(model, device, data_loader_test2)plt.imshow(test_loader.data[0].numpy())plt.show()

可视化中毒样本,成功被预测为特定目标类别“9”,证明攻击成功。
在这里插入图片描述
在这里插入图片描述

完整代码

from packaging import packaging
from torchvision.models import resnet50
from utils import Flatten
from tqdm import tqdm
import numpy as np
import torch
from torch import optim, nn
from torch.utils.data import DataLoader
import torch.nn.functional as F
import matplotlib.pyplot as plt
from torchvision import datasets, transforms
use_cuda = True
device = torch.device("cuda" if (use_cuda and torch.cuda.is_available()) else "cpu")# 载入MNIST训练集和测试集
transform = transforms.Compose([transforms.ToTensor(),])
train_loader = datasets.MNIST(root='data',transform=transform,train=True,download=True)
test_loader = datasets.MNIST(root='data',transform=transform,train=False)
# 可视化样本 大小28×28
# plt.imshow(train_loader.data[0].numpy())
# plt.show()# 训练集样本数据
print(len(train_loader))# 在训练集中植入5000个中毒样本
''' '''
for i in range(5000):train_loader.data[i][26][26] = 255train_loader.data[i][25][25] = 255train_loader.data[i][24][26] = 255train_loader.data[i][26][24] = 255train_loader.targets[i] = 9  # 设置中毒样本的目标标签为9
# 可视化中毒样本
plt.imshow(train_loader.data[0].numpy())
plt.show()data_loader_train = torch.utils.data.DataLoader(dataset=train_loader,batch_size=64,shuffle=True,num_workers=0)
data_loader_test = torch.utils.data.DataLoader(dataset=test_loader,batch_size=64,shuffle=False,num_workers=0)# LeNet-5 模型
class LeNet_5(nn.Module):def __init__(self):super(LeNet_5, self).__init__()self.conv1 = nn.Conv2d(1, 6, 5, 1)self.conv2 = nn.Conv2d(6, 16, 5, 1)self.fc1 = nn.Linear(16 * 4 * 4, 120)self.fc2 = nn.Linear(120, 84)self.fc3 = nn.Linear(84, 10)def forward(self, x):x = F.max_pool2d(self.conv1(x), 2, 2)x = F.max_pool2d(self.conv2(x), 2, 2)x = x.view(-1, 16 * 4 * 4)x = self.fc1(x)x = self.fc2(x)x = self.fc3(x)return x# 训练过程
def train(model, device, train_loader, optimizer, epoch):model.train()for idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)pred = model(data)loss = F.cross_entropy(pred, target)optimizer.zero_grad()loss.backward()optimizer.step()if idx % 100 == 0:print("Train Epoch: {}, iterantion: {}, Loss: {}".format(epoch, idx, loss.item()))torch.save(model.state_dict(), 'badnets.pth')# 测试过程
def test(model, device, test_loader):model.load_state_dict(torch.load('badnets.pth'))model.eval()total_loss = 0correct = 0with torch.no_grad():for idx, (data, target) in enumerate(test_loader):data, target = data.to(device), target.to(device)output = model(data)total_loss += F.cross_entropy(output, target, reduction="sum").item()pred = output.argmax(dim=1)correct += pred.eq(target.view_as(pred)).sum().item()total_loss /= len(test_loader.dataset)acc = correct / len(test_loader.dataset) * 100print("Test Loss: {}, Accuracy: {}".format(total_loss, acc))def main():# 超参数num_epochs = 10lr = 0.01momentum = 0.5model = LeNet_5().to(device)optimizer = torch.optim.SGD(model.parameters(),lr=lr,momentum=momentum)# 在干净训练集上训练,在干净测试集上测试# acc=98.29%# 在带后门数据训练集上训练,在干净测试集上测试# acc=98.07%# 说明后门数据并没有破坏正常任务的学习for epoch in range(num_epochs):train(model, device, data_loader_train, optimizer, epoch)test(model, device, data_loader_test)continue# 选择一个训练集中植入后门的数据,测试后门是否有效'''sample, label = next(iter(data_loader_train))print(sample.size())  # [64, 1, 28, 28]print(label[0])# 可视化plt.imshow(sample[0][0])plt.show()model.load_state_dict(torch.load('badnets.pth'))model.eval()sample = sample.to(device)output = model(sample)print(output[0])pred = output.argmax(dim=1)print(pred[0])'''# 攻击成功率 99.66%for i in range(len(test_loader)):test_loader.data[i][26][26] = 255test_loader.data[i][25][25] = 255test_loader.data[i][24][26] = 255test_loader.data[i][26][24] = 255test_loader.targets[i] = 9data_loader_test2 = torch.utils.data.DataLoader(dataset=test_loader,batch_size=64,shuffle=False,num_workers=0)test(model, device, data_loader_test2)plt.imshow(test_loader.data[0].numpy())plt.show()if __name__=='__main__':main()

这篇关于BadNets:基于数据投毒的模型后门攻击代码(Pytorch)以MNIST为例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/285286

相关文章

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加