Datawhale第23期组队学习—集成学习—task6 模型评估与超参数调优

2023-10-25 19:30

本文主要是介绍Datawhale第23期组队学习—集成学习—task6 模型评估与超参数调优,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1.k折交叉验证
  • 2. 偏差与方差
  • 3. 混淆矩阵与ROC曲线
  • 4. 超参数调优

参考来源:1. https://zhuanlan.zhihu.com/p/140040705
2. https://blog.csdn.net/teng_zz/article/details/98027712

1.k折交叉验证

所谓K折交叉验证,就是将数据集等比例划分成K份。将其中的k-1份作为训练集,剩余1份作为测试集。用k-1份数据训练出的模型预测值与剩余的1份样本测试值进行对比,得出均方误差大小。之后将第2份数据作为测试集,其余k-1份作为训练集,以此类推,将此过程重复k次,得到一个平均误差值。

k折交叉验证

from sklearn.model_selection import cross_val_scorescores1 = cross_val_score(estimator=pipe_lr,X = X_train,y = y_train,cv=10,n_jobs=1)
print("CV accuracy scores:%s" % scores1)
print("CV accuracy:%.3f +/-%.3f"%(np.mean(scores1),np.std(scores1)))

分层k折交叉验证

from sklearn.model_selection import StratifiedKFoldkfold = StratifiedKFold(n_splits=10,random_state=1).split(X_train,y_train)
scores2 = []
for k,(train,test) in enumerate(kfold):pipe_lr.fit(X_train[train],y_train[train])score = pipe_lr.score(X_train[test],y_train[test])scores2.append(score)print('Fold:%2d,Class dist.:%s,Acc:%.3f'%(k+1,np.bincount(y_train[train]),score))
print('\nCV accuracy :%.3f +/-%.3f'%(np.mean(scores2),np.std(scores2)))

2. 偏差与方差

通过前面的学习我们可以知道,模型越复杂,对训练集的拟合效果就越好(理论上来说,我们可以通过添加无数的高次项将训练集的误差降低为0)。但是,对训练集的拟合效果越好,通常在测试集上的表现就相对较差。模型的偏差是指,我们使用的模型去估计真实值所产生的误差,不同数据集训练出来的模型之间的差异称为方差。(详情可见大佬直播:https://www.bilibili.com/video/BV1DZ4y1F7Su)

3. 混淆矩阵与ROC曲线

混淆矩阵

  • 真阳性TP:预测值和真实值都为正例;
  • 真阴性TN:预测值与真实值都为负例;
  • 假阳性FP:预测值为正,实际值为负;
  • 假阴性FN:预测值为负,实际值为正;

在这里插入图片描述
上图是一个简单的混淆矩阵的概念,那什么是混淆矩阵呢?混淆矩阵的每一列代表了预测类别,每一列的总数表示预测为该类别的数据的数目;每一行代表了数据的真实归属类别,每一行的数据总数表示该类别的数据实例的数目。而混淆矩阵主对角线上的数量便是预测正确的数量。由此,产生了一系列度量模型的指标:

  • 准确率:分类正确的样本数占总样本的比例,即: A C C = T P + T N F P + F N + T P + T N ACC = \frac{TP+TN}{FP+FN+TP+TN} ACC=FP+FN+TP+TNTP+TN.
  • 精度:预测为正且分类正确的样本占预测值为正的比例,即: P R E = T P T P + F P PRE = \frac{TP}{TP+FP} PRE=TP+FPTP.
  • 召回率:预测为正且分类正确的样本占预测正确的比例,即: R E C = T P T P + F N REC = \frac{TP}{TP+FN} REC=TP+FNTP.
  • F1值:综合衡量精度和召回率,即: F 1 = 2 P R E × R E C P R E + R E C F1 = 2\frac{PRE\times REC}{PRE + REC} F1=2PRE+RECPRE×REC.
  • ROC曲线:以假阳率为横轴,真阳率为纵轴画出来的曲线,曲线下方面积越大越好。

绘制混淆矩阵

# 混淆矩阵:
# 加载数据
df = pd.read_csv("http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/wdbc.data",header=None)
'''
乳腺癌数据集:569个恶性和良性肿瘤细胞的样本,M为恶性,B为良性
'''
# 做基本的数据预处理
from sklearn.preprocessing import LabelEncoderX = df.iloc[:,2:].values
y = df.iloc[:,1].values
le = LabelEncoder()    #将M-B等字符串编码成计算机能识别的0-1
y = le.fit_transform(y)
le.transform(['M','B'])
# 数据切分8:2
from sklearn.model_selection import train_test_splitX_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,stratify=y,random_state=1)
from sklearn.svm import SVC
pipe_svc = make_pipeline(StandardScaler(),SVC(random_state=1))
from sklearn.metrics import confusion_matrixpipe_svc.fit(X_train,y_train)
y_pred = pipe_svc.predict(X_test)
confmat = confusion_matrix(y_true=y_test,y_pred=y_pred)
fig,ax = plt.subplots(figsize=(2.5,2.5))
ax.matshow(confmat, cmap=plt.cm.Blues,alpha=0.3)
for i in range(confmat.shape[0]):for j in range(confmat.shape[1]):ax.text(x=j,y=i,s=confmat[i,j],va='center',ha='center')
plt.xlabel('predicted label')
plt.ylabel('true label')
plt.show()

在这里插入图片描述

绘制ROC曲线

# 绘制ROC曲线:
from sklearn.metrics import roc_curve,auc
from sklearn.metrics import make_scorer,f1_score
scorer = make_scorer(f1_score,pos_label=0)
gs = GridSearchCV(estimator=pipe_svc,param_grid=param_grid,scoring=scorer,cv=10)
y_pred = gs.fit(X_train,y_train).decision_function(X_test)
#y_pred = gs.predict(X_test)
fpr,tpr,threshold = roc_curve(y_test, y_pred) ###计算真阳率和假阳率
roc_auc = auc(fpr,tpr) ###计算auc的值
plt.figure()
lw = 2
plt.figure(figsize=(7,5))
plt.plot(fpr, tpr, color='darkorange',lw=lw, label='ROC curve (area = %0.2f)' % roc_auc) ###假阳率为横坐标,真阳率为纵坐标做曲线
plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
plt.xlim([-0.05, 1.0])
plt.ylim([-0.05, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic ')
plt.legend(loc="lower right")
plt.show()

在这里插入图片描述

4. 超参数调优

关于超参数,超参数调优的相关理论,在task4 已经进行了描述。
而超参数调优,主要有两种方法:网格搜索和随机搜索。

# 方式1:网格搜索GridSearchCV()
from sklearn.model_selection import GridSearchCV
from sklearn.svm import SVC
import timestart_time = time.time()
pipe_svc = make_pipeline(StandardScaler(),SVC(random_state=1))
param_range = [0.0001,0.001,0.01,0.1,1.0,10.0,100.0,1000.0]
param_grid = [{'svc__C':param_range,'svc__kernel':['linear']},{'svc__C':param_range,'svc__gamma':param_range,'svc__kernel':['rbf']}]
gs = GridSearchCV(estimator=pipe_svc,param_grid=param_grid,scoring='accuracy',cv=10,n_jobs=-1)
gs = gs.fit(X_train,y_train)
end_time = time.time()
print("网格搜索经历时间:%.3f S" % float(end_time-start_time))
print(gs.best_score_)
print(gs.best_params_)
# 方式2:随机网格搜索RandomizedSearchCV()
from sklearn.model_selection import RandomizedSearchCV
from sklearn.svm import SVC
import timestart_time = time.time()
pipe_svc = make_pipeline(StandardScaler(),SVC(random_state=1))
param_range = [0.0001,0.001,0.01,0.1,1.0,10.0,100.0,1000.0]
param_grid = [{'svc__C':param_range,'svc__kernel':['linear']},{'svc__C':param_range,'svc__gamma':param_range,'svc__kernel':['rbf']}]
# param_grid = [{'svc__C':param_range,'svc__kernel':['linear','rbf'],'svc__gamma':param_range}]
gs = RandomizedSearchCV(estimator=pipe_svc, param_distributions=param_grid,scoring='accuracy',cv=10,n_jobs=-1)
gs = gs.fit(X_train,y_train)
end_time = time.time()
print("随机网格搜索经历时间:%.3f S" % float(end_time-start_time))
print(gs.best_score_)
print(gs.best_params_)

这篇关于Datawhale第23期组队学习—集成学习—task6 模型评估与超参数调优的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/284736

相关文章

springboot简单集成Security配置的教程

《springboot简单集成Security配置的教程》:本文主要介绍springboot简单集成Security配置的教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录集成Security安全框架引入依赖编写配置类WebSecurityConfig(自定义资源权限规则

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

springboot集成Deepseek4j的项目实践

《springboot集成Deepseek4j的项目实践》本文主要介绍了springboot集成Deepseek4j的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录Deepseek4j快速开始Maven 依js赖基础配置基础使用示例1. 流式返回示例2. 进阶

一文带你了解SpringBoot中启动参数的各种用法

《一文带你了解SpringBoot中启动参数的各种用法》在使用SpringBoot开发应用时,我们通常需要根据不同的环境或特定需求调整启动参数,那么,SpringBoot提供了哪些方式来配置这些启动参... 目录一、启动参数的常见传递方式二、通过命令行参数传递启动参数三、使用 application.pro

jvm调优常用命令行工具详解

《jvm调优常用命令行工具详解》:本文主要介绍jvm调优常用命令行工具的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一 jinfo命令查看参数1.1 查看jvm参数二 jstack命令2.1 查看现场堆栈信息三 jstat 实时查看堆内存,gc情况3.1

Spring Boot 集成 Quartz 使用Cron 表达式实现定时任务

《SpringBoot集成Quartz使用Cron表达式实现定时任务》本文介绍了如何在SpringBoot项目中集成Quartz并使用Cron表达式进行任务调度,通过添加Quartz依赖、创... 目录前言1. 添加 Quartz 依赖2. 创建 Quartz 任务3. 配置 Quartz 任务调度4. 启

基于@RequestParam注解之Spring MVC参数绑定的利器

《基于@RequestParam注解之SpringMVC参数绑定的利器》:本文主要介绍基于@RequestParam注解之SpringMVC参数绑定的利器,具有很好的参考价值,希望对大家有所帮助... 目录@RequestParam注解:Spring MVC参数绑定的利器什么是@RequestParam?@

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

SpringBoot接收JSON类型的参数方式

《SpringBoot接收JSON类型的参数方式》:本文主要介绍SpringBoot接收JSON类型的参数方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、jsON二、代码准备三、Apifox操作总结一、JSON在学习前端技术时,我们有讲到过JSON,而在