NLP 学习笔记 1:pytorch基础操作以及Perceptron 和 FF networks实现

2023-10-25 12:20

本文主要是介绍NLP 学习笔记 1:pytorch基础操作以及Perceptron 和 FF networks实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一些自己的nlp学习笔记

一:一些基础的pytorch操作

1 tensor的建立

import torch
import numpy as np
x = torch.Tensor(2,3) # 建立两行三列的torch tensorprint(x.type())       # type是Tensor类的一个mothod,返回Python string# torch.FloatTensor是real number的默认类型,一般来说GPU都能很好的处理x = torch.rand(2,3)   # uniform distribution
x = torch.randn(2,3)  # normal distributionx = torch.zeros(2, 3) # 全0 tensor
x = torch.ones(2, 3)  # 全1 tensor
x.fill_(5)            # 将tensor中全填入某相同的值#Tensor from list
x = torch.Tensor([[1, 2, 3], [4, 5, 6]])    #从list中获取tensor#From numpy to torch
a = np.random.rand(2, 3)                          
x = torch.from_numpy(a)                          # 用from_numpy将numpy类型转为tensor
x = torch.from_numpy(a).type(torch.FloatTensor)  # 可以用type来指定数据类型
y = torch.from_numpy(a).type_as(x)               # 可以用type_as来指定与其他tensor相同的数 # 据类型#数据类型以及数据类型的转换,一般默认为FloatTensor
z = x.long()                                     # 转为long

 2 tensor基础操作

# 求和
print(torch.add(x,x))
print(torch.sum(x, dim=0))          #按列求和# 对应元素求积
print(torch.mul(x,x))
print(x*x)# range tensor
print(torch.arange(6))# 返回不同shape的tensor
print(x.view(3, 2))x1 = torch.arange(6).view(2,3)# indexing + sum
x2 = torch.ones(3, 2).long()
x2[:, 1] += 1print('x1 =', x1)
print('x2 =', x2)# 矩阵乘
print(torch.mm(x1, x2))

3 检查pytorch所需硬件

import torchprint(torch.cuda.is_available())
print(torch.cuda.current_device())
print(torch.cuda.device(0))
print(torch.cuda.device_count())
print(torch.cuda.get_device_name(0))

4 pytorch 中的 Automatic differentiation

x = torch.ones(1, requires_grad=True)
print(x)y = x+42
print(y)z = 3*y*y
print(z)z.backward()     # 计算梯度
print(x.grad)    # ∂z/∂x = 6(x+42) = 6*1+252 = 258
print(y.grad)    # y的gradient没有保存因为没有requires_grad=True

二:The Perceptron

import torch
import torch.nn as nn# nn.Module 是所有神经网络的基类
class Perceptron(nn.Module):"""Our perceptron class"""def __init__(self, input_dim):"""Constructor"""super().__init__()self.fc = nn.Linear(input_dim, 1)self.sigmoid = torch.nn.Sigmoid()def forward(self, x_in):# squeeze unwraps the result from the singleton listreturn self.sigmoid(self.fc(x_in)) #.squeeze()print(Perceptron(10).forward(torch.ones(10)))
Activation functions

Sigmoid :f\left ( x \right )=\frac{1}{1+e^{-x}}

Tanh : f(x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}

Relu :f(x)=max(0,x)

Loss function

MSE Loss:L(y,\hat{y})=\frac{1}{n}\sum_{i=1}^{n}(y_{i}-\hat{y_{i}})^{2}

import torch
import torch.nn as nnmse_loss = nn.MSELoss()
produced = torch.randn(2, 4, requires_grad=True)
print(produced)
expected = torch.randn(2, 4)
print(expected)
loss = mse_loss(produced, expected)
print(loss)

categorical cross-entropy loss

L(y,\hat{y})=-\sum_{i=1}^{n}y_{i}log(\hat{y})

import torch
import torch.nn as nnce_loss = nn.CrossEntropyLoss() # for binary classification, we can use nn.BCELoss()
produced = torch.randn(2, 4, requires_grad=True) # 2*4, normal distribution
print(produced)
# input is an index for each vector indicating the correct category/class
expected = torch.tensor([1, 0], dtype=torch.int64)
loss = ce_loss(produced, expected)
print(loss)

三:Language classification with the Perceptron

1 setup

from random import randintimport torch
from torch.utils.data import Dataset, DataLoaderimport torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

2 Data Preparation

建立LanguageRecognitionDataset类,用于处理原始data,生成我们language classification训练所需要的dataset

class LanguageRecognitionDataset(Dataset):"""An automatically generated dataset for our language classification task."""def _get_bigrams(self, sentence_list):big  rams = {}# for each sentencefor s in sentence_list:# for each bigramfor k in range(len(s)-1):bigrams[s[k:k+2]] = 1.0return bigrams.keys()def _get_bigram_vector(self, sentence):sent_bigrams = self._get_bigrams([sentence])vector = []for bigram in self.bigrams:vector.append(1.0 if bigram in sent_bigrams else 0.0)return vectordef __init__(self, sample, training_bigrams = None):"""Args:sample: List of sentences with their classification (True/False)"""self.num_samples = len(sample)if not training_bigrams:self.bigrams = self._get_bigrams([x for x, _ in sample])else:self.bigrams = training_bigramsself.data = []for sentence, gold_label in sample:sentence = sentence.lower()item = {'inputs': torch.tensor(self._get_bigram_vector(sentence)), 'outputs': torch.tensor([gold_label])}self.data.append(item)def __len__(self):return self.num_samplesdef __getitem__(self, idx):return self.data[idx]LanguageRecognitionDataset([("ciao ciao pippo", 1), ("la casa si trova in collina", 1)])[1]

3 建立一个简单的dataset

training_sentences = [("Scienziata italiana scopre la più grande esplosione nell’Universo.", 1.0),("Nell’ammasso di galassie di Ofiuco, distante 390 milioni di anni luce.", 1.0),("Ha rilasciato una quantità di energia 5 volte più grande della precedente che deteneva il primato.", 1.0),("Syria war: Turkey says thousands of migrants have crossed to EU.", 0.0),("Turkey could no longer deal with the amount of people fleeing Syria's civil war, he added.", 0.0),("Greece says it has blocked thousands of migrants from entering illegally from Turkey.", 0.0),("Tutto perfetto? Non proprio. Ci sono elementi problematici che vanno considerati.", 1.0),("Il primo è l’autonomia degli studenti, che devono essere in grado di gestire la tecnologia.", 1.0),("Il secondo, è la durata e la cadenza delle lezioni.", 1.0),("Per motivi di connessione, di competenze, di strumenti.", 1.0),("Serve un’assistenza dedicata.", 1.0),("Potremmo completare l’anno scolastico in versione virtuale?", 1.0),("Siamo preparati per affiancare la didattica tradizionale a quella virtuale, ma non siamo pronti per sostituirla", 1.0),("Various architectures of recurrent neural networks have been successful.", 0.0),("They perform tasks relating to sequence measuring", 0.0),("The networks operate by processing input components sequentially", 0.0),("They retain a hidden vector between iterations", 0.0),("It is constantly used and modified throughout the sequence.", 0.0),("They are able to model arbitrarily complicated programs.", 0.0),("L’Istituto, che raccoglie studenti di liceo scientifico, linguistico e tecnico economico, è l’esempio ideale.", 1.0),]validation_sentences = [("L’Istituto superiore di sanità ha confermato tutti i casi esaminati.", 1.0),("Measures announced after an emergency cabinet meeting also include the cancellation of the Paris half-marathon which was to be held on Sunday.", 0.0),("Lavagne in condivisione, documenti scaricabili sulla piattaforma gratuita, esercizi collaborativi.", 1.0),("Each encoder consists of two major components", 0.0),]test_sentences = [("Il ministro della Salute francese ha raccomandato di salutarsi mantenendo le distanze, mentre l’Organizzazione mondiale della sanità alza l’allerta a molto alta.", 1.0),("Possiamo riammalarci ma in questo caso si parla di ricaduta.", 1.0),("The vast majority of infections and deaths are in China, where the virus originated late last year.", 0.0),("France has banned all indoor gatherings of more than 5,000 people, as part of efforts to contain the country's coronavirus outbreak", 0.0)]def test_dataset_class():simple_dataset = LanguageRecognitionDataset(training_sentences)print('Dataset test:')for i in range(len(training_sentences)):print(f'  sample {i}: {simple_dataset[i]}')test_dataset_class()

4 Model training 

我们建立一个trainer类,其中包含了以下几个部分

  • training loop:使用模型,在数据集上迭代,来解决我们的问题
  • evaluation function:来评估我们模型的学习状态
  • prediction function:获取我们模型的output

为了让模型正确的学习,我们需要loss function来评估模型输出与真实值的差距,需要optimizer来基于loss更正模型参数

class Trainer():"""Utility class to train and evaluate a model."""def __init__(self,model,loss_function,optimizer):"""Args:model: the model we want to train.loss_function: the loss_function to minimize.optimizer: the optimizer used to minimize the loss_function."""self.model = modelself.loss_function = loss_functionself.optimizer = optimizerdef train(self, train_dataset, valid_dataset, epochs=1):"""Args:train_dataset: a Dataset or DatasetLoader instance containingthe training instances.valid_dataset: a Dataset or DatasetLoader instance used to evaluatelearning progress.epochs: the number of times to iterate over train_dataset.Returns:avg_train_loss: the average training loss on train_dataset overepochs."""assert epochs > 1 and isinstance(epochs, int)print('Training...')train_loss = 0.0for epoch in range(epochs):print(' Epoch {:03d}'.format(epoch + 1))epoch_loss = 0.0for step, sample in enumerate(train_dataset):inputs = sample['inputs']labels = sample['outputs']# we need to set the gradients to zero before starting to do backpropragation# because PyTorch accumulates the gradients on subsequent backward passesself.optimizer.zero_grad()predictions = self.model(inputs)sample_loss = self.loss_function(predictions, labels)#print("Before BP:", list(model.parameters()))sample_loss.backward()self.optimizer.step()#print("After BP:", list(model.parameters()))# sample_loss is a Tensor, tolist returns a float (alternative: use float() instead of .tolist())epoch_loss += sample_loss.tolist()print('    [E: {:2d} @ step {}] current avg loss = {:0.4f}'.format(epoch, step, epoch_loss / (step + 1)))avg_epoch_loss = epoch_loss / len(train_dataset)train_loss += avg_epoch_lossprint('  [E: {:2d}] train loss = {:0.4f}'.format(epoch, avg_epoch_loss))valid_loss = self.evaluate(valid_dataset)print('  [E: {:2d}] valid loss = {:0.4f}'.format(epoch, valid_loss))print('... Done!')avg_epoch_loss = train_loss / epochsreturn avg_epoch_lossdef evaluate(self, valid_dataset):"""Args:valid_dataset: the dataset to use to evaluate the model.Returns:avg_valid_loss: the average validation loss over valid_dataset."""valid_loss = 0.0# no gradient updates herewith torch.no_grad():for sample in valid_dataset:inputs = sample['inputs']labels = sample['outputs']predictions = self.model(inputs)sample_loss = self.loss_function(predictions, labels)valid_loss += sample_loss.tolist()return valid_loss / len(valid_dataset)def predict(self, x):"""Returns: hopefully the right prediction."""return self.model(x).tolist()

5 最后,定义dataset,setup trainer,训练我们的模型

training_dataset = DataLoader(LanguageRecognitionDataset(training_sentences), batch_size=6)
validation_dataset = DataLoader(LanguageRecognitionDataset(validation_sentences, training_dataset.dataset.bigrams), batch_size=2)
test_dataset = DataLoader(LanguageRecognitionDataset(test_sentences, training_dataset.dataset.bigrams), batch_size=2)print("Number of input dimensions", len(training_dataset.dataset.bigrams))
model = Perceptron(len(training_dataset.dataset.bigrams))
trainer = Trainer(model,loss_function = nn.MSELoss(),optimizer = optim.SGD(model.parameters(), lr=0.01)
)avg_epoch_loss = trainer.train(training_dataset, validation_dataset,epochs=50)

5 evaluation

检查我们的模型是否真的学习了一些东西

trainer.evaluate(test_dataset)for step, batch in enumerate(test_dataset):print(step, trainer.predict(batch['inputs']), batch['outputs'])

四:Language classification with a Feedforward Neural Network

1 model definition

class LanguageRecognitionFF(nn.Module):"""A simple model that classifies language"""def __init__(self, input_dim, hparams):super().__init__()# Hidden layer: transforms the input value/scalar into# a hidden vector representation.self.fc1 = nn.Linear(input_dim, hparams.hidden_size)self.relu = nn.ReLU()# Output layer: transforms the hidden vector representation# into a value/scalar (hopefully the input value + 1).self.fc2 = nn.Linear(hparams.hidden_size, 1)self.sigmoid = nn.Sigmoid()def forward(self, x):hidden = self.fc1(x)relu = self.relu(hidden)result = self.fc2(relu)return self.sigmoid(result)

2 Model Building

尽量把超参数与model definition分开,因为这样可以我们可以在不碰模型的情况下改变超参数

class HParams():hidden_size = 16

instance

model_ff = LanguageRecognitionFF(len(training_dataset.dataset.bigrams), HParams)

3 Model Training

trainer = Trainer(model = model_ff,loss_function = nn.MSELoss(),optimizer = optim.SGD(model_ff.parameters(), lr=1e-5)
)
trainer.train(training_dataset, validation_dataset, 50)

4 Model Evaluation

trainer.evaluate(test_dataset)for step, batch in enumerate(test_dataset):print(trainer.predict(batch['inputs']), batch['outputs'])

这篇关于NLP 学习笔记 1:pytorch基础操作以及Perceptron 和 FF networks实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/282525

相关文章

Vue中动态权限到按钮的完整实现方案详解

《Vue中动态权限到按钮的完整实现方案详解》这篇文章主要为大家详细介绍了Vue如何在现有方案的基础上加入对路由的增、删、改、查权限控制,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、数据库设计扩展1.1 修改路由表(routes)1.2 修改角色与路由权限表(role_routes)二、后端接口设计

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

Qt实现发送HTTP请求的示例详解

《Qt实现发送HTTP请求的示例详解》这篇文章主要为大家详细介绍了如何通过Qt实现发送HTTP请求,文中的示例代码讲解详细,具有一定的借鉴价值,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1、添加network模块2、包含改头文件3、创建网络访问管理器4、创建接口5、创建网络请求对象6、创建一个回复对

C++实现回文串判断的两种高效方法

《C++实现回文串判断的两种高效方法》文章介绍了两种判断回文串的方法:解法一通过创建新字符串来处理,解法二在原字符串上直接筛选判断,两种方法都使用了双指针法,文中通过代码示例讲解的非常详细,需要的朋友... 目录一、问题描述示例二、解法一:将字母数字连接到新的 string思路代码实现代码解释复杂度分析三、

grom设置全局日志实现执行并打印sql语句

《grom设置全局日志实现执行并打印sql语句》本文主要介绍了grom设置全局日志实现执行并打印sql语句,包括设置日志级别、实现自定义Logger接口以及如何使用GORM的默认logger,通过这些... 目录gorm中的自定义日志gorm中日志的其他操作日志级别Debug自定义 Loggergorm中的

Spring Boot整合消息队列RabbitMQ的实现示例

《SpringBoot整合消息队列RabbitMQ的实现示例》本文主要介绍了SpringBoot整合消息队列RabbitMQ的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目录RabbitMQ 简介与安装1. RabbitMQ 简介2. RabbitMQ 安装Spring

Gin框架中的GET和POST表单处理的实现

《Gin框架中的GET和POST表单处理的实现》Gin框架提供了简单而强大的机制来处理GET和POST表单提交的数据,通过c.Query、c.PostForm、c.Bind和c.Request.For... 目录一、GET表单处理二、POST表单处理1. 使用c.PostForm获取表单字段:2. 绑定到结

springMVC返回Http响应的实现

《springMVC返回Http响应的实现》本文主要介绍了在SpringBoot中使用@Controller、@ResponseBody和@RestController注解进行HTTP响应返回的方法,... 目录一、返回页面二、@Controller和@ResponseBody与RestController

nginx中重定向的实现

《nginx中重定向的实现》本文主要介绍了Nginx中location匹配和rewrite重定向的规则与应用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下... 目录一、location1、 location匹配2、 location匹配的分类2.1 精确匹配2

Nginx之upstream被动式重试机制的实现

《Nginx之upstream被动式重试机制的实现》本文主要介绍了Nginx之upstream被动式重试机制的实现,可以通过proxy_next_upstream来自定义配置,具有一定的参考价值,感兴... 目录默认错误选择定义错误指令配置proxy_next_upstreamproxy_next_upst