NLP 学习笔记 1:pytorch基础操作以及Perceptron 和 FF networks实现

2023-10-25 12:20

本文主要是介绍NLP 学习笔记 1:pytorch基础操作以及Perceptron 和 FF networks实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一些自己的nlp学习笔记

一:一些基础的pytorch操作

1 tensor的建立

import torch
import numpy as np
x = torch.Tensor(2,3) # 建立两行三列的torch tensorprint(x.type())       # type是Tensor类的一个mothod,返回Python string# torch.FloatTensor是real number的默认类型,一般来说GPU都能很好的处理x = torch.rand(2,3)   # uniform distribution
x = torch.randn(2,3)  # normal distributionx = torch.zeros(2, 3) # 全0 tensor
x = torch.ones(2, 3)  # 全1 tensor
x.fill_(5)            # 将tensor中全填入某相同的值#Tensor from list
x = torch.Tensor([[1, 2, 3], [4, 5, 6]])    #从list中获取tensor#From numpy to torch
a = np.random.rand(2, 3)                          
x = torch.from_numpy(a)                          # 用from_numpy将numpy类型转为tensor
x = torch.from_numpy(a).type(torch.FloatTensor)  # 可以用type来指定数据类型
y = torch.from_numpy(a).type_as(x)               # 可以用type_as来指定与其他tensor相同的数 # 据类型#数据类型以及数据类型的转换,一般默认为FloatTensor
z = x.long()                                     # 转为long

 2 tensor基础操作

# 求和
print(torch.add(x,x))
print(torch.sum(x, dim=0))          #按列求和# 对应元素求积
print(torch.mul(x,x))
print(x*x)# range tensor
print(torch.arange(6))# 返回不同shape的tensor
print(x.view(3, 2))x1 = torch.arange(6).view(2,3)# indexing + sum
x2 = torch.ones(3, 2).long()
x2[:, 1] += 1print('x1 =', x1)
print('x2 =', x2)# 矩阵乘
print(torch.mm(x1, x2))

3 检查pytorch所需硬件

import torchprint(torch.cuda.is_available())
print(torch.cuda.current_device())
print(torch.cuda.device(0))
print(torch.cuda.device_count())
print(torch.cuda.get_device_name(0))

4 pytorch 中的 Automatic differentiation

x = torch.ones(1, requires_grad=True)
print(x)y = x+42
print(y)z = 3*y*y
print(z)z.backward()     # 计算梯度
print(x.grad)    # ∂z/∂x = 6(x+42) = 6*1+252 = 258
print(y.grad)    # y的gradient没有保存因为没有requires_grad=True

二:The Perceptron

import torch
import torch.nn as nn# nn.Module 是所有神经网络的基类
class Perceptron(nn.Module):"""Our perceptron class"""def __init__(self, input_dim):"""Constructor"""super().__init__()self.fc = nn.Linear(input_dim, 1)self.sigmoid = torch.nn.Sigmoid()def forward(self, x_in):# squeeze unwraps the result from the singleton listreturn self.sigmoid(self.fc(x_in)) #.squeeze()print(Perceptron(10).forward(torch.ones(10)))
Activation functions

Sigmoid :f\left ( x \right )=\frac{1}{1+e^{-x}}

Tanh : f(x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}

Relu :f(x)=max(0,x)

Loss function

MSE Loss:L(y,\hat{y})=\frac{1}{n}\sum_{i=1}^{n}(y_{i}-\hat{y_{i}})^{2}

import torch
import torch.nn as nnmse_loss = nn.MSELoss()
produced = torch.randn(2, 4, requires_grad=True)
print(produced)
expected = torch.randn(2, 4)
print(expected)
loss = mse_loss(produced, expected)
print(loss)

categorical cross-entropy loss

L(y,\hat{y})=-\sum_{i=1}^{n}y_{i}log(\hat{y})

import torch
import torch.nn as nnce_loss = nn.CrossEntropyLoss() # for binary classification, we can use nn.BCELoss()
produced = torch.randn(2, 4, requires_grad=True) # 2*4, normal distribution
print(produced)
# input is an index for each vector indicating the correct category/class
expected = torch.tensor([1, 0], dtype=torch.int64)
loss = ce_loss(produced, expected)
print(loss)

三:Language classification with the Perceptron

1 setup

from random import randintimport torch
from torch.utils.data import Dataset, DataLoaderimport torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

2 Data Preparation

建立LanguageRecognitionDataset类,用于处理原始data,生成我们language classification训练所需要的dataset

class LanguageRecognitionDataset(Dataset):"""An automatically generated dataset for our language classification task."""def _get_bigrams(self, sentence_list):big  rams = {}# for each sentencefor s in sentence_list:# for each bigramfor k in range(len(s)-1):bigrams[s[k:k+2]] = 1.0return bigrams.keys()def _get_bigram_vector(self, sentence):sent_bigrams = self._get_bigrams([sentence])vector = []for bigram in self.bigrams:vector.append(1.0 if bigram in sent_bigrams else 0.0)return vectordef __init__(self, sample, training_bigrams = None):"""Args:sample: List of sentences with their classification (True/False)"""self.num_samples = len(sample)if not training_bigrams:self.bigrams = self._get_bigrams([x for x, _ in sample])else:self.bigrams = training_bigramsself.data = []for sentence, gold_label in sample:sentence = sentence.lower()item = {'inputs': torch.tensor(self._get_bigram_vector(sentence)), 'outputs': torch.tensor([gold_label])}self.data.append(item)def __len__(self):return self.num_samplesdef __getitem__(self, idx):return self.data[idx]LanguageRecognitionDataset([("ciao ciao pippo", 1), ("la casa si trova in collina", 1)])[1]

3 建立一个简单的dataset

training_sentences = [("Scienziata italiana scopre la più grande esplosione nell’Universo.", 1.0),("Nell’ammasso di galassie di Ofiuco, distante 390 milioni di anni luce.", 1.0),("Ha rilasciato una quantità di energia 5 volte più grande della precedente che deteneva il primato.", 1.0),("Syria war: Turkey says thousands of migrants have crossed to EU.", 0.0),("Turkey could no longer deal with the amount of people fleeing Syria's civil war, he added.", 0.0),("Greece says it has blocked thousands of migrants from entering illegally from Turkey.", 0.0),("Tutto perfetto? Non proprio. Ci sono elementi problematici che vanno considerati.", 1.0),("Il primo è l’autonomia degli studenti, che devono essere in grado di gestire la tecnologia.", 1.0),("Il secondo, è la durata e la cadenza delle lezioni.", 1.0),("Per motivi di connessione, di competenze, di strumenti.", 1.0),("Serve un’assistenza dedicata.", 1.0),("Potremmo completare l’anno scolastico in versione virtuale?", 1.0),("Siamo preparati per affiancare la didattica tradizionale a quella virtuale, ma non siamo pronti per sostituirla", 1.0),("Various architectures of recurrent neural networks have been successful.", 0.0),("They perform tasks relating to sequence measuring", 0.0),("The networks operate by processing input components sequentially", 0.0),("They retain a hidden vector between iterations", 0.0),("It is constantly used and modified throughout the sequence.", 0.0),("They are able to model arbitrarily complicated programs.", 0.0),("L’Istituto, che raccoglie studenti di liceo scientifico, linguistico e tecnico economico, è l’esempio ideale.", 1.0),]validation_sentences = [("L’Istituto superiore di sanità ha confermato tutti i casi esaminati.", 1.0),("Measures announced after an emergency cabinet meeting also include the cancellation of the Paris half-marathon which was to be held on Sunday.", 0.0),("Lavagne in condivisione, documenti scaricabili sulla piattaforma gratuita, esercizi collaborativi.", 1.0),("Each encoder consists of two major components", 0.0),]test_sentences = [("Il ministro della Salute francese ha raccomandato di salutarsi mantenendo le distanze, mentre l’Organizzazione mondiale della sanità alza l’allerta a molto alta.", 1.0),("Possiamo riammalarci ma in questo caso si parla di ricaduta.", 1.0),("The vast majority of infections and deaths are in China, where the virus originated late last year.", 0.0),("France has banned all indoor gatherings of more than 5,000 people, as part of efforts to contain the country's coronavirus outbreak", 0.0)]def test_dataset_class():simple_dataset = LanguageRecognitionDataset(training_sentences)print('Dataset test:')for i in range(len(training_sentences)):print(f'  sample {i}: {simple_dataset[i]}')test_dataset_class()

4 Model training 

我们建立一个trainer类,其中包含了以下几个部分

  • training loop:使用模型,在数据集上迭代,来解决我们的问题
  • evaluation function:来评估我们模型的学习状态
  • prediction function:获取我们模型的output

为了让模型正确的学习,我们需要loss function来评估模型输出与真实值的差距,需要optimizer来基于loss更正模型参数

class Trainer():"""Utility class to train and evaluate a model."""def __init__(self,model,loss_function,optimizer):"""Args:model: the model we want to train.loss_function: the loss_function to minimize.optimizer: the optimizer used to minimize the loss_function."""self.model = modelself.loss_function = loss_functionself.optimizer = optimizerdef train(self, train_dataset, valid_dataset, epochs=1):"""Args:train_dataset: a Dataset or DatasetLoader instance containingthe training instances.valid_dataset: a Dataset or DatasetLoader instance used to evaluatelearning progress.epochs: the number of times to iterate over train_dataset.Returns:avg_train_loss: the average training loss on train_dataset overepochs."""assert epochs > 1 and isinstance(epochs, int)print('Training...')train_loss = 0.0for epoch in range(epochs):print(' Epoch {:03d}'.format(epoch + 1))epoch_loss = 0.0for step, sample in enumerate(train_dataset):inputs = sample['inputs']labels = sample['outputs']# we need to set the gradients to zero before starting to do backpropragation# because PyTorch accumulates the gradients on subsequent backward passesself.optimizer.zero_grad()predictions = self.model(inputs)sample_loss = self.loss_function(predictions, labels)#print("Before BP:", list(model.parameters()))sample_loss.backward()self.optimizer.step()#print("After BP:", list(model.parameters()))# sample_loss is a Tensor, tolist returns a float (alternative: use float() instead of .tolist())epoch_loss += sample_loss.tolist()print('    [E: {:2d} @ step {}] current avg loss = {:0.4f}'.format(epoch, step, epoch_loss / (step + 1)))avg_epoch_loss = epoch_loss / len(train_dataset)train_loss += avg_epoch_lossprint('  [E: {:2d}] train loss = {:0.4f}'.format(epoch, avg_epoch_loss))valid_loss = self.evaluate(valid_dataset)print('  [E: {:2d}] valid loss = {:0.4f}'.format(epoch, valid_loss))print('... Done!')avg_epoch_loss = train_loss / epochsreturn avg_epoch_lossdef evaluate(self, valid_dataset):"""Args:valid_dataset: the dataset to use to evaluate the model.Returns:avg_valid_loss: the average validation loss over valid_dataset."""valid_loss = 0.0# no gradient updates herewith torch.no_grad():for sample in valid_dataset:inputs = sample['inputs']labels = sample['outputs']predictions = self.model(inputs)sample_loss = self.loss_function(predictions, labels)valid_loss += sample_loss.tolist()return valid_loss / len(valid_dataset)def predict(self, x):"""Returns: hopefully the right prediction."""return self.model(x).tolist()

5 最后,定义dataset,setup trainer,训练我们的模型

training_dataset = DataLoader(LanguageRecognitionDataset(training_sentences), batch_size=6)
validation_dataset = DataLoader(LanguageRecognitionDataset(validation_sentences, training_dataset.dataset.bigrams), batch_size=2)
test_dataset = DataLoader(LanguageRecognitionDataset(test_sentences, training_dataset.dataset.bigrams), batch_size=2)print("Number of input dimensions", len(training_dataset.dataset.bigrams))
model = Perceptron(len(training_dataset.dataset.bigrams))
trainer = Trainer(model,loss_function = nn.MSELoss(),optimizer = optim.SGD(model.parameters(), lr=0.01)
)avg_epoch_loss = trainer.train(training_dataset, validation_dataset,epochs=50)

5 evaluation

检查我们的模型是否真的学习了一些东西

trainer.evaluate(test_dataset)for step, batch in enumerate(test_dataset):print(step, trainer.predict(batch['inputs']), batch['outputs'])

四:Language classification with a Feedforward Neural Network

1 model definition

class LanguageRecognitionFF(nn.Module):"""A simple model that classifies language"""def __init__(self, input_dim, hparams):super().__init__()# Hidden layer: transforms the input value/scalar into# a hidden vector representation.self.fc1 = nn.Linear(input_dim, hparams.hidden_size)self.relu = nn.ReLU()# Output layer: transforms the hidden vector representation# into a value/scalar (hopefully the input value + 1).self.fc2 = nn.Linear(hparams.hidden_size, 1)self.sigmoid = nn.Sigmoid()def forward(self, x):hidden = self.fc1(x)relu = self.relu(hidden)result = self.fc2(relu)return self.sigmoid(result)

2 Model Building

尽量把超参数与model definition分开,因为这样可以我们可以在不碰模型的情况下改变超参数

class HParams():hidden_size = 16

instance

model_ff = LanguageRecognitionFF(len(training_dataset.dataset.bigrams), HParams)

3 Model Training

trainer = Trainer(model = model_ff,loss_function = nn.MSELoss(),optimizer = optim.SGD(model_ff.parameters(), lr=1e-5)
)
trainer.train(training_dataset, validation_dataset, 50)

4 Model Evaluation

trainer.evaluate(test_dataset)for step, batch in enumerate(test_dataset):print(trainer.predict(batch['inputs']), batch['outputs'])

这篇关于NLP 学习笔记 1:pytorch基础操作以及Perceptron 和 FF networks实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/282525

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Mysql表的简单操作(基本技能)

《Mysql表的简单操作(基本技能)》在数据库中,表的操作主要包括表的创建、查看、修改、删除等,了解如何操作这些表是数据库管理和开发的基本技能,本文给大家介绍Mysql表的简单操作,感兴趣的朋友一起看... 目录3.1 创建表 3.2 查看表结构3.3 修改表3.4 实践案例:修改表在数据库中,表的操作主要

C# WinForms存储过程操作数据库的实例讲解

《C#WinForms存储过程操作数据库的实例讲解》:本文主要介绍C#WinForms存储过程操作数据库的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、存储过程基础二、C# 调用流程1. 数据库连接配置2. 执行存储过程(增删改)3. 查询数据三、事务处