POJ 1659 Frogs' Neighborhood (havel定理)

2023-10-25 11:20

本文主要是介绍POJ 1659 Frogs' Neighborhood (havel定理),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Frogs' Neighborhood
Time Limit: 5000MS Memory Limit: 10000K
Total Submissions: 5819 Accepted: 2498 Special Judge

Description

未名湖附近共有N个大小湖泊L1L2, ..., Ln(其中包括未名湖),每个湖泊Li里住着一只青蛙Fi(1 ≤ i ≤ N)。如果湖泊LiLj之间有水路相连,则青蛙FiFj互称为邻居。现在已知每只青蛙的邻居数目x1x2, ..., xn,请你给出每两个湖泊之间的相连关系。

Input

第一行是测试数据的组数T(0 ≤ T ≤ 20)。每组数据包括两行,第一行是整数N(2 < N < 10),第二行是N个整数,x1x2,..., xn(0 ≤ xi ≤ N)。

Output

对输入的每组测试数据,如果不存在可能的相连关系,输出"NO"。否则输出"YES",并用N×N的矩阵表示湖泊间的相邻关系,即如果湖泊i与湖泊j之间有水路相连,则第i行的第j个数字为1,否则为0。每两个数字之间输出一个空格。如果存在多种可能,只需给出一种符合条件的情形。相邻两组测试数据之间输出一个空行。

Sample Input

3
7
4 3 1 5 4 2 1 
6
4 3 1 4 2 0 
6
2 3 1 1 2 1 

Sample Output

YES
0 1 0 1 1 0 1 
1 0 0 1 1 0 0 
0 0 0 1 0 0 0 
1 1 1 0 1 1 0 
1 1 0 1 0 1 0 
0 0 0 1 1 0 0 
1 0 0 0 0 0 0 NOYES
0 1 0 0 1 0 
1 0 0 1 1 0 
0 0 0 0 0 1 
0 1 0 0 0 0 
1 1 0 0 0 0 
0 0 1 0 0 0 

Source

POJ Monthly--2004.05.15 Alcyone@pku
下面是直接转载:

给出一个无向图的顶点度序列{dn},要求判断能否构造出一个简单无向图。若能构造任意一个输出邻接矩阵。

如果是给定一个图,计算顶点的度非常简单,而这道题恰恰是逆过程,根据顶点的度,构造出一个无向图。

分析

贪心的方法是每次把顶点按度大小从大到小排序,取出度最大的点Vi,依次和度较大的那些顶点Vj连接,同时减去Vj的度。连接完之后就不再考虑Vi了,剩下的点再次排序然后找度最大的去连接……这样就可以构造出一个可行解。

判断无解有两个地方,若某次选出的Vi的度比剩下的顶点还多,则无解;若某次Vj的度减成了负数,则无解。

至于什么是Havel定理,上面这个构造过程就是了

定理的简单证明如下:

(<=)若d'可简单图化,我们只需把原图中的最大度点和d'中度最大的d1个点连边即可,易得此图必为简单图。

(=>)若d可简单图化,设得到的简单图为G。分两种情况考虑:

(a)若G中存在边(V_1,V_2), (V_1,V_3), \ldots, (V_1,V_{d_1+1}),则把这些边除去得简单图G',于是d'可简单图化为G'

(b)若存在点Vi,Vj使得i=dj,必存在k使得(Vi, Vk)在G中但(Vj,Vk)不在G中。这时我们可以令GG=G-{(Vi,Vk),(V1,Vj)}+{(Vk,Vj),(V1,Vi)}。GG的度序列仍为d,我们又回到了情况(a)。

 

 

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>using namespace std;const int VM=20;int n,map[VM][VM];struct Lake{int id,deg;
}lake[VM];int cmp(Lake a,Lake b){return a.deg>b.deg;
}int main(){//freopen("input.txt","r",stdin);int t;scanf("%d",&t);while(t--){scanf("%d",&n);for(int i=0;i<n;i++){scanf("%d",&lake[i].deg);lake[i].id=i;}int flag=1;memset(map,0,sizeof(map));while(flag){sort(lake,lake+n,cmp);/*printf("------------\n");for(int i=0;i<n;i++)printf("(%d, %d)   ",lake[i].id,lake[i].deg);printf("\n");printf("------------\n");*/if(lake[0].deg==0)break;for(int j=1;j<=lake[0].deg;j++){lake[j].deg--;if(lake[j].deg<0){flag=0;break;}map[lake[0].id][lake[j].id]=1;map[lake[j].id][lake[0].id]=1;}lake[0].deg=0;}if(flag){printf("YES\n");for(int i=0;i<n;i++){printf("%d",map[i][0]);for(int j=1;j<n;j++)printf(" %d",map[i][j]);printf("\n");}}elseprintf("NO\n");if(t!=0)printf("\n");}return 0;
}

 

转载于:https://www.cnblogs.com/jackge/archive/2013/05/13/3076831.html

这篇关于POJ 1659 Frogs' Neighborhood (havel定理)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/282228

相关文章

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

hdu 2602 and poj 3624(01背包)

01背包的模板题。 hdu2602代码: #include<stdio.h>#include<string.h>const int MaxN = 1001;int max(int a, int b){return a > b ? a : b;}int w[MaxN];int v[MaxN];int dp[MaxN];int main(){int T;int N, V;s

poj 1511 Invitation Cards(spfa最短路)

题意是给你点与点之间的距离,求来回到点1的最短路中的边权和。 因为边很大,不能用原来的dijkstra什么的,所以用spfa来做。并且注意要用long long int 来存储。 稍微改了一下学长的模板。 stack stl 实现代码: #include<stdio.h>#include<stack>using namespace std;const int M

poj 3259 uva 558 Wormholes(bellman最短路负权回路判断)

poj 3259: 题意:John的农场里n块地,m条路连接两块地,w个虫洞,虫洞是一条单向路,不但会把你传送到目的地,而且时间会倒退Ts。 任务是求你会不会在从某块地出发后又回来,看到了离开之前的自己。 判断树中是否存在负权回路就ok了。 bellman代码: #include<stdio.h>const int MaxN = 501;//农场数const int

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

poj 1287 Networking(prim or kruscal最小生成树)

题意给你点与点间距离,求最小生成树。 注意点是,两点之间可能有不同的路,输入的时候选择最小的,和之前有道最短路WA的题目类似。 prim代码: #include<stdio.h>const int MaxN = 51;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int P;int prim(){bool vis[MaxN];

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D

poj 1502 MPI Maelstrom(单源最短路dijkstra)

题目真是长得头疼,好多生词,给跪。 没啥好说的,英语大水逼。 借助字典尝试翻译了一下,水逼直译求不喷 Description: BIT他们的超级计算机最近交货了。(定语秀了一堆词汇那就省略吧再见) Valentine McKee的研究顾问Jack Swigert,要她来测试一下这个系统。 Valentine告诉Swigert:“因为阿波罗是一个分布式共享内存的机器,所以它的内存访问

uva 10061 How many zero's and how many digits ?(不同进制阶乘末尾几个0)+poj 1401

题意是求在base进制下的 n!的结果有几位数,末尾有几个0。 想起刚开始的时候做的一道10进制下的n阶乘末尾有几个零,以及之前有做过的一道n阶乘的位数。 当时都是在10进制下的。 10进制下的做法是: 1. n阶位数:直接 lg(n!)就是得数的位数。 2. n阶末尾0的个数:由于2 * 5 将会在得数中以0的形式存在,所以计算2或者计算5,由于因子中出现5必然出现2,所以直接一

poj 3159 (spfa差分约束最短路) poj 1201

poj 3159: 题意: 每次给出b比a多不多于c个糖果,求n最多比1多多少个糖果。 解析: 差分约束。 这个博客讲差分约束讲的比较好: http://www.cnblogs.com/void/archive/2011/08/26/2153928.html 套个spfa。 代码: #include <iostream>#include <cstdio>#i