本文主要是介绍Laplace(拉普拉斯)算子,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
目录
- 拉普拉斯算子
- 高斯-拉普拉斯算子
拉普拉斯算子
Laplace算子作为边缘检测之一,和Sobel算子一样也是工程数学中常用的一种积分变换,属于空间锐化滤波操作。拉普拉斯算子(Laplace Operator)是n维欧几里德空间中的一个二阶微分算子,定义为梯度(▽f)的散度(▽·f)。
拉普拉斯算子是二阶微分线性算子,在图像边缘处理中,二阶微分的边缘定位能力更强,锐化效果更好,因此在进行图像边缘处理时,直接采用二阶微分算子而不使用一阶微分。
图1 一阶微分和二阶微分计算图
离散函数的导数退化成了差分,一维一阶差分公式和二阶差分公式分别为:
分别对Laplace算子x,y两个方向的二阶导数进行差分就得到了离散函数的Laplace算子。在一个二维函数f(x,y)中,x,y两个方向的二阶差分分别为:
所以Laplace算子的差分形式为:
写成filter mask的形式如下:
该mask的特点,mask在上下左右四个90度的方向上结果相同,也就是说在90度方向上无方向性。为了让该mask在45度的方向上也具有该性质,对该filter mask进行扩展定义为:
将Laplace算子写成filter mask后,其操作大同小异于其他的空间滤波操作。将filter mask在原图上逐行移动,然后mask中数值与其重合的像素相乘后求和,赋给与mask中心重合的像素,对图像的第一,和最后的行和列无法做上述操作的像素赋值零,就得到了拉普拉斯操作结果。因为Laplace算子是二阶导数操作,其在强调图像素中灰度不连续的部分的同时也不在强调灰度值连续的部分。这样会产生一个具有很明显的灰度边界,但是没有足够特征的黑色背景。背景特征可以通过原图像与Laplace算子操作后的图像混合恢复,公式如下:
写成filter mask的形式如下:
扩展定义为:
高斯-拉普拉斯算子
由于拉普拉斯算子对图片中的噪声很敏感。因此,为了解决这一问题,我们一般会在进行拉普拉斯操作之前先对图像进行高斯平滑滤波处理,得到高斯-拉普拉斯算子(LoG)。
高斯-拉普拉斯算子是效果更好的边缘检测器,它把高斯平滑器和拉普拉斯锐化结合起来。先平滑掉噪声,再进行边缘检测。
模版例子如下:
这篇关于Laplace(拉普拉斯)算子的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!