R语言可视化:ggplot2冲积/桑基图sankey分析大学录取情况、泰坦尼克幸存者数据

本文主要是介绍R语言可视化:ggplot2冲积/桑基图sankey分析大学录取情况、泰坦尼克幸存者数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近我们被客户要求撰写关于桑基图的研究报告,包括一些图形和统计输出。

本文介绍了冲积/桑基图,以及

  • 定义了命名方案和冲积/桑基图的基本组成部分(轴、冲积层、流)。
  • 描述了所识别的冲积/桑基图数据结构。
  • 展示了一些流行的主题。

冲积/桑基图

这里有一个典型的冲积/桑基图。

现在,我们以该图像为参考点,定义典型冲积图的以下元素。

  • 轴是一个维度(变量),数据沿着这个维度在一个固定的水平位置被垂直分组。上面的图使用了三个分类轴。 船舱等级、性别和年龄。
  • 每个轴上的组被描述为不透明的块,称为类别。例如,类别轴包含四个等级的舱:一等舱、二等舱、三等舱和船员。
  • 水平样条被称为冲积流,横跨该图。在该图中,每个冲积层对应于每个轴变量的一个固定值,由其在轴上的垂直位置表示,由其填充颜色表示。
  • 相邻轴对之间的冲积段是流动的。
  • 冲积与层相交的节点。节点在上面的图中并不直观,但可以推断为填充的矩形,它将层中的流延伸到图的两端,或者将中心层两边的流连接起来。

正如下一节中的例子所示,这些元素中哪些被纳入冲积图,取决于基础数据的结构和创建者希望图中传达的内容。

冲积/桑基图数据

识别两种格式的 "冲积/桑基图数据",它们基本上对应于分类重复测量数据的 "宽 "和 "长 "格式。第三种,表格(或数组)形式,流行于存储具有多个分类维度的数据,如泰坦尼克号幸存数据和大学录取情况数据集。

(宽)格式数据

宽格式数据每一行都对应于在每个变量上取一个特定值的观察队列,每个变量都有自己的列。另外一列包含了每一行的数量,如队列中的观察单元数,可用于控制层的高度。 基本上,宽格式由每一冲积层的一行组成。这是基础函数as.data.frame()转换频率表的格式,例如3维的大学录取情况数据集。

head(as.data.frame(UCBAdmissions), n = 12)

这种格式:用户声明数量的轴变量,识别并处理。


plot(pltdat1,aes(y = Freq)) +
strat(width = 1/12) +
geom_label(stat = "stratum")) +
ggtitle("大学录取和拒绝情况,按性别和系别分列")+theme_bw()

这些图的一个重要特征是纵轴的意义。各层之间没有插入空隙,所以图的总高度反映了观测值的累积数量。


plot((Titanic),stratumwidth = 1/8, reverse = FALSE ,stat = "stratum", aes(label = after_stat(stratum)), labels = c("幸存", "性别", "船舱等级")) +
title("按等级和性别划分的泰坦尼克号幸存状况")+theme_bw()

这种格式和功能对很多应用都很有用。

  • axis[0-9]*表示位置。
  • 由stat_stratum()产生的分层变量。
  • 横轴反映识别该轴的隐含分类变量。

此外,像填充这样的格式美学对于每个冲积图来说都是固定的;例如,它们不能根据每个轴的取值而在轴之间变化。这意味着,尽管它们可以重现平行集的分支树结构,但这种格式和功能不能产生具有这里("冲积图")和这里("控制颜色")特色的颜色方案的冲积图,它们在每个轴上都被 "重置"。

(长)格式

长格式包含了每一节的一行,变成一个键值对,编码轴为键,层为值的列。这种格式需要一个额外的索引列,将对应于一个共同队列的行连接起来,即一个冲积层的结点。

在宽格式(alluvia)和长格式(lodes)之间转换数据的函数包括几个参数。

同样的stat和geom可以使用一套不同的位置美学来接收这种格式的数据。

  • x,表示该行所对应的轴的 "键 "变量,要沿横轴排列。
  • 层,由x表示的轴变量的 "值";以及
  • 冲积层,连接单个冲积层的行的索引方案。

难民数据分析

在这些情况下,分层没有包含比冲积层更多的信息,因此通常不会被绘制。作为一个例子,我们可以将难民数据集中的国家按地区分组,以比较不同规模的难民数量。

qplot(data = Refug,x = year, y = refugees,alluvium = country,fill = country, 
colour = country)

该格式允许我们指定沿同一冲积层的不同轴线变化的美学,对重复测量数据集很有用。需要为每个冲积物生成一个单独的图形对象。

学术课程分析

下面的图表使用了一组学生在几个学期内的学术课程的(变化)。在所有学期中跟踪每个学生。

ggplot(majos,flow = "alluvium", lode = "frontback",legend.position = "bottom")

分层高度y没有被指定,所以每一行都被赋予单位高度。这个例子展示了处理缺失数据的一种方式。缺失数据的处理(特别是层的顺序)也取决于层变量是字符还是因子/数字的。

最后,我们提供了汇总相邻轴之间流量的选项。我们可以在流感疫苗调查的数据上演示这个选项。

qplot(vaccina,x = survey, stratum = response, alluvium = subject,y = freq, stat = "stratum", size = 3) 

这张图忽略了轴之间流动的连续性。这种 "无记忆 "图产生了一个不那么杂乱的图,其中最多只有一个流量从一个轴上的每个层到下一个轴上的每个层。


这篇关于R语言可视化:ggplot2冲积/桑基图sankey分析大学录取情况、泰坦尼克幸存者数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/278756

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验