2021-1-2 吴恩达-C5 序列模型-w1 循环序列模型(课后编程2-Character level language model-Dinosaurus Island 字符级语言模型-恐龙岛)

本文主要是介绍2021-1-2 吴恩达-C5 序列模型-w1 循环序列模型(课后编程2-Character level language model-Dinosaurus Island 字符级语言模型-恐龙岛),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文链接
如果打不开,也可以复制链接到https://nbviewer.jupyter.org中打开。

循环序列模型 Character level language model-Dinosaurus Island 字符级语言模型-恐龙岛

  • 1 问题描述
    • 1.1 数据集和预处理
    • 1.2 模型概述
  • 2 构建模型中的模块
    • 2.1 梯度修剪
    • 2.2 采样
  • 3 构建语言模型
    • 3.1 梯度下降
    • 3.2 训练模型
  • 4 像莎士比亚那样写作
  • 5 全代码

欢迎来到恐龙岛!6500万年前,恐龙就存在了,在这次任务中它们又回来了。
你负责一项特殊任务。生物学研究人员正在创造新的恐龙品种,并将它们带到地球上,而你的工作就是给这些恐龙命名。如果一只恐龙不喜欢它的名字,它可能会发疯,所以明智地选择!
在这里插入图片描述

幸运的是,你学到了一些DL的知识,你将用它来避免起错名字。你的助手收集了一份他们能找到的所有恐龙名字的列表,并将它们汇编到这个数据集中。(点击前面的链接可以随意查看。)要创建新的恐龙名称,你将构建一个字符级语言模型来生成新名称。你的算法将学习不同的名称模式,并随机生成新名称。希望这个算法能让你和你的团队远离恐龙的愤怒!

完成本练习,你将学到

  • 如何存储文本数据以便使用RNN进行处理。
  • 如何通过在每个时间步对预测进行采样并将其传递给下一个RNN单元来合成数据
  • 如何构建字符级文本生成RNN
  • 为什么梯度修剪很重要?

我们将首先加载在rnn_utils中为你提供的一些函数。具体来说,您可以访问诸如rnn_forward和rnn_backward 之类的函数,这些函数等同于你在上一个任务中实现的函数。

import numpy as np
from utils import *
import random
from random import shuffle

1 问题描述

1.1 数据集和预处理

运行以下代码以读取恐龙名称的数据集,创建唯一字符(如a-z)的列表,并计算数据集和词汇表大小。

data = open('dinos.txt', 'r').read()
data= data.lower()
chars = list(set(data))
data_size, vocab_size = len(data), len(chars)
print('There are %d total characters and %d unique characters in your data.' % (data_size, vocab_size))

结果

There are 19909 total characters and 27 unique characters in your data.

字符是a-z(26个字符)加上“\n”(或换行符),在本作业中,它起着类似于我们在课程中讨论的(或“句尾”)标记的作用,只是在这里它表示恐龙名称的结尾,而不是句子的结尾。

在下面的代码中,我们创建一个python字典(即哈希表),将每个字符映射到0-26之间的索引。
我们还创建了第二个python字典,将每个索引映射回相应的字符。
这将帮助你找出哪个索引对应于softmax层的概率分布输出中的哪个字符。
在下面,char_to_ix和ix_to_char是python字典。

char_to_ix = { ch:i for i,ch in enumerate(sorted(chars)) }
ix_to_char = { i:ch for i,ch in enumerate(sorted(chars)) }
print(ix_to_char)

结果

{0: '\n', 1: 'a', 2: 'b', 3: 'c', 4: 'd', 5: 'e', 6: 'f', 7: 'g', 8: 'h', 9: 'i', 10: 'j', 11: 'k', 12: 'l', 13: 'm', 14: 'n', 15: 'o', 16: 'p', 17: 'q', 18: 'r', 19: 's', 20: 't', 21: 'u', 22: 'v', 23: 'w', 24: 'x', 25: 'y', 26: 'z'}

1.2 模型概述

你的模型将具有以下结构:

  • 初始化参数
  • 运行优化循环
    • 前向传播计算损失
    • 反向传播计算关于损失的梯度
    • 修剪梯度以免梯度爆炸
    • 用梯度下降更新规则更新参数
  • 返回学习好的参数

在这里插入图片描述
在每一个时间步,RNN都试图预测给定一个字符的下一个字符是什么。
数据集 X = ( x ⟨ 1 ⟩ , x ⟨ 2 ⟩ , . . . , x ⟨ T x ⟩ ) X = (x^{\langle 1 \rangle}, x^{\langle 2 \rangle}, ..., x^{\langle T_x \rangle}) X=(x1,x2,...,xTx)是一个列表类型的字符训练集,同时 Y = ( y ⟨ 1 ⟩ , y ⟨ 2 ⟩ , . . . , y ⟨ T x ⟩ ) Y = (y^{\langle 1 \rangle}, y^{\langle 2 \rangle}, ..., y^{\langle T_x \rangle}) Y=(y1,y2,...,yTx)在每个时间步 t t t亦是如此,因此, y ⟨ t ⟩ = x ⟨ t + 1 ⟩ y^{\langle t \rangle} = x^{\langle t+1 \rangle} yt=xt+1

2 构建模型中的模块

在本部分中,你将构建整个模型的两个重要模块

  • 梯度修剪:避免梯度爆炸
  • 取采样:一种用来产生字符的技术

然后应用这两个函数来构建模型。

2.1 梯度修剪

本节中你将实现一个clip函数,它将在优化循环中被调用。回想一下,你的整个循环结构通常由前向传播、成本计算、反向传博和参数更新组成。在更新参数之前,你将在需要时执行梯度剪裁,以确保梯度不会“爆炸”,这意味着使用过大的值。

在下面的练习中,你将实现一个函数clip,它输入梯度字典,并在需要时输出梯度的剪裁版本。有不同的方法来剪裁梯度;我们将使用一个简单的按元素剪裁的过程,其中梯度向量的每个元素都被剪裁到某个范围[-N,N]之间。一般来说,你将提供一个maxValue(比如10)。在本例中,

  • 如果梯度向量的任何分量大于10,则将其设置为10;
  • 如果梯度向量的任何分量小于-10,则将其设置为-10。
  • 如果它在-10和10之间,它不变。

在这里插入图片描述

练习:实现下面的函数返回你的裁剪后的梯度字典gradients。你的函数接受最大阈值并返回梯度的剪裁版本。你可以查看这个提示,了解如何在numpy中进行剪辑的示例

实现代码

### GRADED FUNCTION: clipdef clip(gradients, maxValue):'''Clips the gradients' values between minimum and maximum.使用maxValue来修剪梯度Arguments:gradients -- a dictionary containing the gradients "dWaa", "dWax", "dWya", "db", "dby"字典类型,包含了以下参数:"dWaa", "dWax", "dWya", "db", "dby"maxValue -- everything above this number is set to this number, and everything less than -maxValue is set to -maxValue阈值,把梯度值限制在[-maxValue, maxValue]内Returns: gradients -- a dictionary with the clipped gradients. 修剪后的梯度'''# 获取参数dWaa, dWax, dWya, db, dby = gradients['dWaa'], gradients['dWax'], gradients['dWya'], gradients['db'], gradients['dby']### START CODE HERE #### clip to mitigate exploding gradients, loop over [dWax, dWaa, dWya, db, dby]. (≈2 lines)# 梯度修剪for gradient in [dWax, dWaa, dWya, db, dby]:np.clip(gradient, -maxValue, maxValue, out=gradient)### END CODE HERE ###gradients = {"dWaa": dWaa, "dWax": dWax, "dWya": dWya, "db": db, "dby": dby}return gradients

测试一下

np.random.seed(3)
dWax = np.random.randn(5,3)*10
dWaa = np.random.randn(5,5)*10
dWya = np.random.randn(2,5)*10
db = np.random.randn(5,1)*10
dby = np.random.randn(2,1)*10
gradients = {

这篇关于2021-1-2 吴恩达-C5 序列模型-w1 循环序列模型(课后编程2-Character level language model-Dinosaurus Island 字符级语言模型-恐龙岛)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/278354

相关文章

C语言小项目实战之通讯录功能

《C语言小项目实战之通讯录功能》:本文主要介绍如何设计和实现一个简单的通讯录管理系统,包括联系人信息的存储、增加、删除、查找、修改和排序等功能,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录功能介绍:添加联系人模块显示联系人模块删除联系人模块查找联系人模块修改联系人模块排序联系人模块源代码如下

Python判断for循环最后一次的6种方法

《Python判断for循环最后一次的6种方法》在Python中,通常我们不会直接判断for循环是否正在执行最后一次迭代,因为Python的for循环是基于可迭代对象的,它不知道也不关心迭代的内部状态... 目录1.使用enuhttp://www.chinasem.cnmerate()和len()来判断for

Java循环创建对象内存溢出的解决方法

《Java循环创建对象内存溢出的解决方法》在Java中,如果在循环中不当地创建大量对象而不及时释放内存,很容易导致内存溢出(OutOfMemoryError),所以本文给大家介绍了Java循环创建对象... 目录问题1. 解决方案2. 示例代码2.1 原始版本(可能导致内存溢出)2.2 修改后的版本问题在

PyCharm接入DeepSeek实现AI编程的操作流程

《PyCharm接入DeepSeek实现AI编程的操作流程》DeepSeek是一家专注于人工智能技术研发的公司,致力于开发高性能、低成本的AI模型,接下来,我们把DeepSeek接入到PyCharm中... 目录引言效果演示创建API key在PyCharm中下载Continue插件配置Continue引言

基于Go语言实现一个压测工具

《基于Go语言实现一个压测工具》这篇文章主要为大家详细介绍了基于Go语言实现一个简单的压测工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录整体架构通用数据处理模块Http请求响应数据处理Curl参数解析处理客户端模块Http客户端处理Grpc客户端处理Websocket客户端

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Java 字符数组转字符串的常用方法

《Java字符数组转字符串的常用方法》文章总结了在Java中将字符数组转换为字符串的几种常用方法,包括使用String构造函数、String.valueOf()方法、StringBuilder以及A... 目录1. 使用String构造函数1.1 基本转换方法1.2 注意事项2. 使用String.valu

使用SQL语言查询多个Excel表格的操作方法

《使用SQL语言查询多个Excel表格的操作方法》本文介绍了如何使用SQL语言查询多个Excel表格,通过将所有Excel表格放入一个.xlsx文件中,并使用pandas和pandasql库进行读取和... 目录如何用SQL语言查询多个Excel表格如何使用sql查询excel内容1. 简介2. 实现思路3

Go语言实现将中文转化为拼音功能

《Go语言实现将中文转化为拼音功能》这篇文章主要为大家详细介绍了Go语言中如何实现将中文转化为拼音功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 有这么一个需求:新用户入职 创建一系列账号比较麻烦,打算通过接口传入姓名进行初始化。想把姓名转化成拼音。因为有些账号即需要中文也需要英

Go语言使用Buffer实现高性能处理字节和字符

《Go语言使用Buffer实现高性能处理字节和字符》在Go中,bytes.Buffer是一个非常高效的类型,用于处理字节数据的读写操作,本文将详细介绍一下如何使用Buffer实现高性能处理字节和... 目录1. bytes.Buffer 的基本用法1.1. 创建和初始化 Buffer1.2. 使用 Writ