2021-1-2 吴恩达-C5 序列模型-w1 循环序列模型(课后编程2-Character level language model-Dinosaurus Island 字符级语言模型-恐龙岛)

本文主要是介绍2021-1-2 吴恩达-C5 序列模型-w1 循环序列模型(课后编程2-Character level language model-Dinosaurus Island 字符级语言模型-恐龙岛),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文链接
如果打不开,也可以复制链接到https://nbviewer.jupyter.org中打开。

循环序列模型 Character level language model-Dinosaurus Island 字符级语言模型-恐龙岛

  • 1 问题描述
    • 1.1 数据集和预处理
    • 1.2 模型概述
  • 2 构建模型中的模块
    • 2.1 梯度修剪
    • 2.2 采样
  • 3 构建语言模型
    • 3.1 梯度下降
    • 3.2 训练模型
  • 4 像莎士比亚那样写作
  • 5 全代码

欢迎来到恐龙岛!6500万年前,恐龙就存在了,在这次任务中它们又回来了。
你负责一项特殊任务。生物学研究人员正在创造新的恐龙品种,并将它们带到地球上,而你的工作就是给这些恐龙命名。如果一只恐龙不喜欢它的名字,它可能会发疯,所以明智地选择!
在这里插入图片描述

幸运的是,你学到了一些DL的知识,你将用它来避免起错名字。你的助手收集了一份他们能找到的所有恐龙名字的列表,并将它们汇编到这个数据集中。(点击前面的链接可以随意查看。)要创建新的恐龙名称,你将构建一个字符级语言模型来生成新名称。你的算法将学习不同的名称模式,并随机生成新名称。希望这个算法能让你和你的团队远离恐龙的愤怒!

完成本练习,你将学到

  • 如何存储文本数据以便使用RNN进行处理。
  • 如何通过在每个时间步对预测进行采样并将其传递给下一个RNN单元来合成数据
  • 如何构建字符级文本生成RNN
  • 为什么梯度修剪很重要?

我们将首先加载在rnn_utils中为你提供的一些函数。具体来说,您可以访问诸如rnn_forward和rnn_backward 之类的函数,这些函数等同于你在上一个任务中实现的函数。

import numpy as np
from utils import *
import random
from random import shuffle

1 问题描述

1.1 数据集和预处理

运行以下代码以读取恐龙名称的数据集,创建唯一字符(如a-z)的列表,并计算数据集和词汇表大小。

data = open('dinos.txt', 'r').read()
data= data.lower()
chars = list(set(data))
data_size, vocab_size = len(data), len(chars)
print('There are %d total characters and %d unique characters in your data.' % (data_size, vocab_size))

结果

There are 19909 total characters and 27 unique characters in your data.

字符是a-z(26个字符)加上“\n”(或换行符),在本作业中,它起着类似于我们在课程中讨论的(或“句尾”)标记的作用,只是在这里它表示恐龙名称的结尾,而不是句子的结尾。

在下面的代码中,我们创建一个python字典(即哈希表),将每个字符映射到0-26之间的索引。
我们还创建了第二个python字典,将每个索引映射回相应的字符。
这将帮助你找出哪个索引对应于softmax层的概率分布输出中的哪个字符。
在下面,char_to_ix和ix_to_char是python字典。

char_to_ix = { ch:i for i,ch in enumerate(sorted(chars)) }
ix_to_char = { i:ch for i,ch in enumerate(sorted(chars)) }
print(ix_to_char)

结果

{0: '\n', 1: 'a', 2: 'b', 3: 'c', 4: 'd', 5: 'e', 6: 'f', 7: 'g', 8: 'h', 9: 'i', 10: 'j', 11: 'k', 12: 'l', 13: 'm', 14: 'n', 15: 'o', 16: 'p', 17: 'q', 18: 'r', 19: 's', 20: 't', 21: 'u', 22: 'v', 23: 'w', 24: 'x', 25: 'y', 26: 'z'}

1.2 模型概述

你的模型将具有以下结构:

  • 初始化参数
  • 运行优化循环
    • 前向传播计算损失
    • 反向传播计算关于损失的梯度
    • 修剪梯度以免梯度爆炸
    • 用梯度下降更新规则更新参数
  • 返回学习好的参数

在这里插入图片描述
在每一个时间步,RNN都试图预测给定一个字符的下一个字符是什么。
数据集 X = ( x ⟨ 1 ⟩ , x ⟨ 2 ⟩ , . . . , x ⟨ T x ⟩ ) X = (x^{\langle 1 \rangle}, x^{\langle 2 \rangle}, ..., x^{\langle T_x \rangle}) X=(x1,x2,...,xTx)是一个列表类型的字符训练集,同时 Y = ( y ⟨ 1 ⟩ , y ⟨ 2 ⟩ , . . . , y ⟨ T x ⟩ ) Y = (y^{\langle 1 \rangle}, y^{\langle 2 \rangle}, ..., y^{\langle T_x \rangle}) Y=(y1,y2,...,yTx)在每个时间步 t t t亦是如此,因此, y ⟨ t ⟩ = x ⟨ t + 1 ⟩ y^{\langle t \rangle} = x^{\langle t+1 \rangle} yt=xt+1

2 构建模型中的模块

在本部分中,你将构建整个模型的两个重要模块

  • 梯度修剪:避免梯度爆炸
  • 取采样:一种用来产生字符的技术

然后应用这两个函数来构建模型。

2.1 梯度修剪

本节中你将实现一个clip函数,它将在优化循环中被调用。回想一下,你的整个循环结构通常由前向传播、成本计算、反向传博和参数更新组成。在更新参数之前,你将在需要时执行梯度剪裁,以确保梯度不会“爆炸”,这意味着使用过大的值。

在下面的练习中,你将实现一个函数clip,它输入梯度字典,并在需要时输出梯度的剪裁版本。有不同的方法来剪裁梯度;我们将使用一个简单的按元素剪裁的过程,其中梯度向量的每个元素都被剪裁到某个范围[-N,N]之间。一般来说,你将提供一个maxValue(比如10)。在本例中,

  • 如果梯度向量的任何分量大于10,则将其设置为10;
  • 如果梯度向量的任何分量小于-10,则将其设置为-10。
  • 如果它在-10和10之间,它不变。

在这里插入图片描述

练习:实现下面的函数返回你的裁剪后的梯度字典gradients。你的函数接受最大阈值并返回梯度的剪裁版本。你可以查看这个提示,了解如何在numpy中进行剪辑的示例

实现代码

### GRADED FUNCTION: clipdef clip(gradients, maxValue):'''Clips the gradients' values between minimum and maximum.使用maxValue来修剪梯度Arguments:gradients -- a dictionary containing the gradients "dWaa", "dWax", "dWya", "db", "dby"字典类型,包含了以下参数:"dWaa", "dWax", "dWya", "db", "dby"maxValue -- everything above this number is set to this number, and everything less than -maxValue is set to -maxValue阈值,把梯度值限制在[-maxValue, maxValue]内Returns: gradients -- a dictionary with the clipped gradients. 修剪后的梯度'''# 获取参数dWaa, dWax, dWya, db, dby = gradients['dWaa'], gradients['dWax'], gradients['dWya'], gradients['db'], gradients['dby']### START CODE HERE #### clip to mitigate exploding gradients, loop over [dWax, dWaa, dWya, db, dby]. (≈2 lines)# 梯度修剪for gradient in [dWax, dWaa, dWya, db, dby]:np.clip(gradient, -maxValue, maxValue, out=gradient)### END CODE HERE ###gradients = {"dWaa": dWaa, "dWax": dWax, "dWya": dWya, "db": db, "dby": dby}return gradients

测试一下

np.random.seed(3)
dWax = np.random.randn(5,3)*10
dWaa = np.random.randn(5,5)*10
dWya = np.random.randn(2,5)*10
db = np.random.randn(5,1)*10
dby = np.random.randn(2,1)*10
gradients = {

这篇关于2021-1-2 吴恩达-C5 序列模型-w1 循环序列模型(课后编程2-Character level language model-Dinosaurus Island 字符级语言模型-恐龙岛)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/278354

相关文章

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot

C# string转unicode字符的实现

《C#string转unicode字符的实现》本文主要介绍了C#string转unicode字符的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录1. 获取字符串中每个字符的 Unicode 值示例代码:输出:2. 将 Unicode 值格式化

使用Go语言开发一个命令行文件管理工具

《使用Go语言开发一个命令行文件管理工具》这篇文章主要为大家详细介绍了如何使用Go语言开发一款命令行文件管理工具,支持批量重命名,删除,创建,移动文件,需要的小伙伴可以了解下... 目录一、工具功能一览二、核心代码解析1. 主程序结构2. 批量重命名3. 批量删除4. 创建文件/目录5. 批量移动三、如何安

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

关于最长递增子序列问题概述

《关于最长递增子序列问题概述》本文详细介绍了最长递增子序列问题的定义及两种优化解法:贪心+二分查找和动态规划+状态压缩,贪心+二分查找时间复杂度为O(nlogn),通过维护一个有序的“尾巴”数组来高效... 一、最长递增子序列问题概述1. 问题定义给定一个整数序列,例如 nums = [10, 9, 2