XGBOOST(Extreme Gradient Boosting)算法原理详细总结

2023-10-24 07:50

本文主要是介绍XGBOOST(Extreme Gradient Boosting)算法原理详细总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        上篇我们对传统的GBDT算法原理进行了探讨,本篇我们来探讨一个具有王者地位的算法:XGBOOST(Extreme Gradient Boosting
)。XGBOOST是来自于华盛顿大学的一个研究项目,2016年由陈天奇和Carlos Guestrin在KDD上发表:XGBoost: A Scalable Tree Boosting System。自此之后,XGBOOST不仅在kaggle比赛中赢得一席之地,而且也推动了工业领域的一些前沿应用的发展。XGBOOST是我们处理中小型结构化数据必须要掌握的一个杀手锏。
        本篇我们主要参考陈天奇博士介绍XGBOOST的PPT:Boosted Trees 。

1)CART回归树

        CART回归树既可以处理分类任务又可以处理回归任务。CART算法对训练样本集的每个特征递归的进行二分判断,将特征空间划分为有限的单元,每个单元具有一定的权重。简单的可以认为,CART回归树是一个叶子节点具有权重的二叉决策树。CART回归树有两个特点:

  • 决策规则和决策树是一样的;
  • 决策树的每个叶子节点都包含一个权重;

下图就是一个回归决策树的示例:
在这里插入图片描述
        假如某决策树的叶子节点数目为 T T T,每个叶子节点的权重为 w → = { w 1 , w 2 , . . . w T } \overrightarrow{w}=\left\{w_1,w_2,...w_T\right\} w ={w1,w2,...wT},样本 x x x落在叶节点 q q q中,决策树模型 f ( x ) f(x) f(x)可以定义为:
f t ( x ) = w q ( x ) w ∈ w → , q : R d → { 1 , 2 , . . . T } f_t(x) = w_{q(x)} \quad w \in \overrightarrow{w},q:R^d\rightarrow \left\{1,2,...T\right\} ft(x)=wq(x)ww ,q:Rd{1,2,...T}
        从上式中可以看出,决策树的两个核心为:树的结构 q q q,叶节点的权重 w w w。确定树的结构和叶节点的权重便可以确定一颗决策树。
        在决策树算法原理中我们了解到,决策树比较容易过拟合,因此会对决策树进行剪枝操作。那么我们该如何衡量决策树的复杂度呢?我们可以使用,树的深度,叶节点数量,叶子节点权重的 L 2 L2 L2正则等。这里我们使用叶节点的数量和叶子节点权重的 L 2 L2 L2正则表示决策树模型的复杂度,数学表达式为:
Ω ( f t ) = γ T + 1 2 λ ∑ j = 1 T w j 2 \Omega(f_t) =\gamma T+\frac{1}{2} \lambda \sum_{j=1}^Tw_j^2 Ω(ft)=γT+21λj=1Twj2
其中, T T T为叶节点的个数, w w w为叶节点所对应的权重, γ \gamma γ为收缩系数, λ \lambda λ L 2 L2 L2平滑系数。下图即为一个决策树模型复杂度的示例:
在这里插入图片描述

2)XGBOOST目标函数

        XGBOOST基于Boosting框架,它采用的是前向优化算法,即从前往后,逐渐建立基模型来优化逼近目标函数,具体过程如下:
y ^ i ( 0 ) = 0 \hat y_i^{(0)}=0 y^i(0)=0
y ^ i ( 1 ) = f 1 ( x i ) = y ^ i ( 0 ) + f 1 ( x i ) \hat y_i^{(1)}=f_1(x_i)=\hat y_i^{(0)} +f_1(x_i) y^i(1)=f1(xi)=y^i(0)+f1(xi)
y ^ i ( 2 ) = f 1 ( x i ) + f 2 ( x i ) = y ^ i ( 1 ) + f 2 ( x i ) \hat y_i^{(2)}=f_1(x_i) + f_2(x_i)=\hat y_i^{(1)} +f_2(x_i) y^i(2)=f1(xi)+f2(xi)=y^i(1)+f2(xi)
. . . ... ...
y ^ i ( t ) = ∑ k = 1 t f k ( x i ) = y ^ i ( t − 1 ) + f t ( x i ) \hat y_i^{(t)}=\sum_{k=1}^tf_k(x_i)=\hat y_i^{(t-1)} +f_t(x_i) y^i(t)=k=1tfk(xi)=y^i(t1)+ft(xi)
        从上式中,我们可以看出,每一步我们都是要训练一个新的基模型 f t ( x i ) f_t(x_i) ft(xi),那么我们的目标就是让训练的新模型使得误差最小,即目标函数为:
O b j ( t ) = ∑ i = 1 n l ( y i , y ^ i ) + ∑ i = 1 t Ω ( f i ) Obj^{(t)}=\sum_{i=1}^nl(y_i,\hat y_i) +\sum_{i=1}^t\Omega(f_i) Obj(t)=i=1nl(yi,y^i)+i=1tΩ(fi)
= ∑ i = 1 n l ( y i , y ^ i ( t − 1 ) + f t ( x i ) ) + Ω ( f t ) + c o n s t a n t =\sum_{i=1}^nl(y_i,\hat y_i^{(t-1)} +f_t(x_i))+\Omega(f_t)+constant =i=1nl(yi,y^i(t1)+ft(xi))+Ω(ft)+constant
其中 Ω ( f t ) \Omega(f_t) Ω(ft)为模型复杂度,用来防止模型过拟合,平衡模型偏差和方差的。
        由泰勒二阶展开式可知:
f ( x + Δ x ) ≈ f ( x ) + f ′ ( x ) Δ x + 1 2 f ′ ′ ( x ) Δ x 2 f(x+\Delta x)\approx f(x)+f'(x)\Delta x+\frac{1}{2}f''(x)\Delta x^2 f(x+Δx)f(x)+f(x)Δx+21f

这篇关于XGBOOST(Extreme Gradient Boosting)算法原理详细总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/273777

相关文章

Git打标签从本地创建到远端推送的详细流程

《Git打标签从本地创建到远端推送的详细流程》在软件开发中,Git标签(Tag)是为发布版本、标记里程碑量身定制的“快照锚点”,它能永久记录项目历史中的关键节点,然而,仅创建本地标签往往不够,如何将其... 目录一、标签的两种“形态”二、本地创建与查看1. 打附注标http://www.chinasem.cn

Java StringBuilder 实现原理全攻略

《JavaStringBuilder实现原理全攻略》StringBuilder是Java提供的可变字符序列类,位于java.lang包中,专门用于高效处理字符串的拼接和修改操作,本文给大家介绍Ja... 目录一、StringBuilder 基本概述核心特性二、StringBuilder 核心实现2.1 内部

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

Spring 依赖注入与循环依赖总结

《Spring依赖注入与循环依赖总结》这篇文章给大家介绍Spring依赖注入与循环依赖总结篇,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. Spring 三级缓存解决循环依赖1. 创建UserService原始对象2. 将原始对象包装成工

Python与MySQL实现数据库实时同步的详细步骤

《Python与MySQL实现数据库实时同步的详细步骤》在日常开发中,数据同步是一项常见的需求,本篇文章将使用Python和MySQL来实现数据库实时同步,我们将围绕数据变更捕获、数据处理和数据写入这... 目录前言摘要概述:数据同步方案1. 基本思路2. mysql Binlog 简介实现步骤与代码示例1