OpenCV-Python鼠标绘制矩形框和像素归一化

2023-10-23 22:40

本文主要是介绍OpenCV-Python鼠标绘制矩形框和像素归一化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

鼠标绘制矩形框

之前有说到使用opencv绘制几何图形,但那些都是固定地给出坐标绘制固定位置的形状。有时需要鼠标在任何位置绘制几何形状,下面就来看看如何使用鼠标响应函数在图像的不同位置绘制几何形状。

首先需要了解的是鼠标响应函数cv.setMouseCallback(windowName, onMouse, param=None)

  • windowName: 窗口的名字;
  • onMouse: 鼠标响应函数,回调函数;
  • param: 传给回调函数的参数。

最重要的是第2个参数,所有操作都是鼠标回调函数完成,例如本例的画矩形框。

回调函数的统一格式:遵循以下函数原型

on_mouse(event, x, y, flags, param)

上述on_mouse可以是任意名称,其他参数说明如下:

  • event是 CV_EVENT_* 变量之一,CV_EVENT 见下表;
  • xy是鼠标在图像坐标系的坐标(不是窗口坐标系);
  • flags是 CV_EVENT_FLAG 的组合;
  • param是用户定义的传递到setMouseCallback函数调用的参数。

鼠标事件的类型可通过如下代码获取:

import cv2
events = [i for i in dir(cv2) if 'EVENT' in i]
print(events)

返回类型结果:

['EVENT_FLAG_ALTKEY', 'EVENT_FLAG_CTRLKEY', 'EVENT_FLAG_LBUTTON', 'EVENT_FLAG_MBUTTON', 'EVENT_FLAG_RBUTTON',
'EVENT_FLAG_SHIFTKEY', 'EVENT_LBUTTONDBLCLK', 'EVENT_LBUTTONDOWN',
'EVENT_LBUTTONUP', 'EVENT_MBUTTONDBLCLK', 'EVENT_MBUTTONDOWN', 'EVENT_MBUTTONUP', 'EVENT_MOUSEHWHEEL',
'EVENT_MOUSEMOVE', 'EVENT_MOUSEWHEEL', 'EVENT_RBUTTONDBLCLK', 'EVENT_RBUTTONDOWN', 'EVENT_RBUTTONUP']

event具体说明

事件代号说明
EVENT_MOUSEMOVE0滑动
EVENT_LBUTTONDOWN1左键点击
EVENT_RBUTTONDOWN2右键点击
EVENT_MBUTTONDOWN3中键点击
EVENT_LBUTTONUP4左键放开
EVENT_RBUTTONUP5右键放开
EVENT_MBUTTONUP6中键放开
EVENT_LBUTTONDBLCLK7左键双击
EVENT_RBUTTONDBLCLK8右键双击
EVENT_MBUTTONDBLCLK9中键双击

flags具体说明

falgs代号说明
EVENT_FLAG_LBUTTON1左键拖曳
EVENT_FLAG_RBUTTON2右键拖曳
EVENT_FLAG_MBUTTON4中键拖曳
EVENT_FLAG_CTRLKEY8~15按 Ctrl 不放
EVENT_FLAG_SHIFTKEY16~31按 Shift 不放
EVENT_FLAG_ALTKEY32~39按 Alt 不放

实例:使用鼠标响应函数在一张图像上画出人脸区域。可以应用于目标检测中标注图片或者是截取图像ROI区域。

# -*-coding:utf-8-*-
"""
File Name: mouse_response_and_type_conversion.py
Program IDE: PyCharm
Date: 10:04
Create File By Author: Hong
"""
import cv2 as cv
import numpy as np# 在图像上画矩形框
x1 = -1
y1 = -1
x2 = -1
y2 = -1# canvas = np.zeros((300, 300, 3), dtype=np.uint8)
canvas = cv.imread('images/2.png', cv.IMREAD_COLOR)
img = np.copy(canvas)# 回调,系统调用回调函数解决你的问题
# 鼠标响应回调函数,参数固定;对应鼠标事件、横坐标、纵坐标、flags和其他参数
def mouse_drawing(event, x, y, flags, param):# print(x, y)global x1, y1, x2, y2if event == cv.EVENT_LBUTTONDOWN:x1 = xy1 = yif event == cv.EVENT_MOUSEMOVE:if x1 < 0 or y1 < 0:returnx2 = xy2 = ydx = x2 - x1dy = y2 - y1if dx > 0 and dy > 0:# 擦除重叠# canvas[:, :] = 0canvas[:, :, :] = img[:, :, :]cv.rectangle(canvas, (x1, y1), (x2, y2), (255, 0, 0), 2, 8, 0)if event == cv.EVENT_LBUTTONUP:x2 = xy2 = ydx = x2 - x1dy = y2 - y1if dx > 0 and dy > 0:# canvas[:, :] = 0canvas[:, :, :] = img[:, :, :]cv.rectangle(canvas, (x1, y1), (x2, y2), (255, 0, 0), 2, 8, 0)x1 = -1y1 = -1x2 = -1y2 = -1def mouse_response():cv.namedWindow('Mouse Response', cv.WINDOW_AUTOSIZE)# 再某个窗口上设置鼠标响应函数cv.setMouseCallback('Mouse Response', mouse_drawing)while True:cv.imshow('Mouse Response', canvas)c = cv.waitKey(1)if c == 27:breakcv.destroyAllWindows()if __name__ == '__main__':mouse_response()

效果展示:
画出人脸区域

图像像素类型转换和归一化

类型转换使用numpy数据格式转换,常见类型转换如下:

  • np.uint8(): 转换为无符号8位整型数;
  • np.float32(): 转换为32位浮点数;
  • np.float64(): 转换位64位浮点数。

图像归一化的两种方式:

  1. image/255.0: 将图像像素归一化到(0~1)
  2. cv.normalize(src, dst, alpha=None, beta=None, norm_type=None, dtype=None, mask=None): 归一化函数,参数说明如下:
    src: 输入矩阵
    dst: 输出矩阵, 与输入矩阵形状相同
    alpha: 如果norm_type为NORM_MINMAX ,则alpha为最小值或最大值;如果norm_type为其他类型,则为归一化要乘的系数
    beta: 如果norm_type为NORM_MINMAX ,则beta为最小值或最大值;如果norm_type为其他类型,beta被忽略,此处不会被用到,一般传入0
    norm_type: 归一化类型,常见的有NORM_L1, NORM_L2, NORM_INF, NORM_MINMAX
    dtype: 如果取负值时,dst与src同样的类型;否则,dst和src有同样的通道数,且此时图像深度为CV_MAT_DEPTH(dtype)
    mask: 可选操作掩膜

具体实现代码:

# -*-coding:utf-8-*-
"""
File Name: mouse_response_and_type_conversion.py
Program IDE: PyCharm
Date: 10:04
Create File By Author: Hong
"""
import cv2 as cv
import numpy as np# 图像像素类型转换和归一化
def pixel_normalization(image_path: str):img = cv.imread(image_path, cv.IMREAD_COLOR)# 可以显示整数和浮点数像素图片# 图像归一化# 方法1# print(img/255.0)cv.imshow('input', img / 255.0)# 方法2result = np.zeros_like(np.float32(img))cv.normalize(img, result, 0, 1, cv.NORM_MINMAX, dtype=cv.CV_32F)print(result)cv.imshow('result', result)cv.waitKey(0)cv.destroyAllWindows()if __name__ == '__main__':path = 'images/2.png'pixel_normalization(path)

结果展示:
图像归一化

获取更多计算机视觉内容,请关注微信公众号 ”AI与计算机视觉“

这篇关于OpenCV-Python鼠标绘制矩形框和像素归一化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/270901

相关文章

Python判断for循环最后一次的6种方法

《Python判断for循环最后一次的6种方法》在Python中,通常我们不会直接判断for循环是否正在执行最后一次迭代,因为Python的for循环是基于可迭代对象的,它不知道也不关心迭代的内部状态... 目录1.使用enuhttp://www.chinasem.cnmerate()和len()来判断for

使用Python实现高效的端口扫描器

《使用Python实现高效的端口扫描器》在网络安全领域,端口扫描是一项基本而重要的技能,通过端口扫描,可以发现目标主机上开放的服务和端口,这对于安全评估、渗透测试等有着不可忽视的作用,本文将介绍如何使... 目录1. 端口扫描的基本原理2. 使用python实现端口扫描2.1 安装必要的库2.2 编写端口扫

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

使用Python合并 Excel单元格指定行列或单元格范围

《使用Python合并Excel单元格指定行列或单元格范围》合并Excel单元格是Excel数据处理和表格设计中的一项常用操作,本文将介绍如何通过Python合并Excel中的指定行列或单... 目录python Excel库安装Python合并Excel 中的指定行Python合并Excel 中的指定列P

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

Python调用另一个py文件并传递参数常见的方法及其应用场景

《Python调用另一个py文件并传递参数常见的方法及其应用场景》:本文主要介绍在Python中调用另一个py文件并传递参数的几种常见方法,包括使用import语句、exec函数、subproce... 目录前言1. 使用import语句1.1 基本用法1.2 导入特定函数1.3 处理文件路径2. 使用ex

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Python进阶之Excel基本操作介绍

《Python进阶之Excel基本操作介绍》在现实中,很多工作都需要与数据打交道,Excel作为常用的数据处理工具,一直备受人们的青睐,本文主要为大家介绍了一些Python中Excel的基本操作,希望... 目录概述写入使用 xlwt使用 XlsxWriter读取修改概述在现实中,很多工作都需要与数据打交