文献及代码阅读报告 - SS-LSTM:A Hierarchical LSTM Model for Pedestrian Trajectory Prediction...

本文主要是介绍文献及代码阅读报告 - SS-LSTM:A Hierarchical LSTM Model for Pedestrian Trajectory Prediction...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1616500-20190808233230913-1040141317.png

概览

简述

SS-LSTM全称Social-Scene-LSTM,是一种分层的LSTM模型,在已有的考虑相邻路人之间影响的Social-LSTM模型之上额外增加考虑了行人背景的因素。SS-LSTM架构类似Seq2Seq,由3个Encoder生成的向量拼接后形成1个Decoder的输入,并最终做出轨迹预测,有关Encoder和Decoder具体细节下文介绍。

主要结论与贡献

  1. 提出了SS-LSTM分层模型,相较于其他LSTM-based模型在benchmark数据集上有更好表现。
  2. 引入了圆形的neighborhood划分方式,经过实际对比得出log圆形区域划分相交线性圆形划分和矩形划分有更好表现。

测试

  1. 数据集:ETH、UCY(采用Alahi等人提出Social LSTM时使用的数据集,位置信息经过了归一化处理)。

  2. 测试指标:FDE、ADE

  3. 测试对象:

    1. baseline:linear、Vanilla LSTM

    2. LSTM-based:S-LSTM(g,c,l),SS-LSTM(g,c,l)

      g: grid maps, c:circle maps, l: log maps(区别在于区域形状和划分标准不同)

进一步研究方向

  1. 增加行人的影响权重,例如依据行人间的距离。(此文采用的neighborhood矩阵是Occupancy Tensor而不是Social Tensor,在模型开始跑之间可以完全求出,即每个行人的LSTM数据在运行中不会交叉。详情请见https://www.cnblogs.com/sinoyou/p/11227348.html)
  2. 为模型加入空间-时间的注意力机制。
  3. 为模型加入新网络以学习其他因素,例如场景中行人之间的舒适距离。


模型

整体框架

1616500-20190808233246054-1482220918.png

[注意]:图示来自论文,查阅模型代码后发现部分连线有误导性,详情见下一节。


1. Person Scale LSTM Encoder

描述:对于行人\(i\)编码其自身的轨迹序列

模型输入:\(X_{obs}^i = [(x_1^i,y_1^i), ..., (x_{obs}^i,y_{obs}^i)]\)

模型迭代:\(p_t^i = LSTM_l^{enc}(p_{t-1}^i, x_t^i, y_t^i, W_1)\)

2. Social Scale LSTM Encoder

描述:对于行人\(i\)编码其邻近行人的信息矩阵序列

模型输入:Occupancy Map \(O_t^i\)

  • Occupancy对于每个行人在每个时间片刻都是不同的。
  • \(O_t^i(a,b) = \Sigma_{j \in N^i} \alpha_{ab}(x_t^j, y_t^j)\) (其中\(\alpha(.,.)\)是判断函数,根据行人\(j\)是否处在\(i\)编号为\([a,b]\)的区域内,映射至真值域)。
  • 本文注重讨论了三种判断函数:
    • 方形图
    • 线性半径的圆形图
    • log半径的圆形图

模型迭代:\(s_o^{i,t} = LSTM_2^{enc}(s_o^{i,t-1}, O_i^t, W_2)\)

3. Scene Scale Encoder

描述:对于行人\(i\)编码其所处图像背景信息。

模型输入:Scene Feature \(F_t\)

  • 从图片到LSTM的输入\(F_t\),需要使用CNN网络提取特征。
  • CNN网络同其他LSTMs共同训练,包含三层带池化的卷积层,两层全连接层和防止过拟合的Batch Normalization层。

1616500-20190808233300688-1991439045.png

模型迭代:\(s_c^{i,t} = LSTM_3^{enc}(s_c^{i,t-1}, F_t, W_3)\)


4. Decoder

描述:根据三个Encoder编码出的向量进行解码,做出轨迹预测。

模型输入:将来自Person Scale,Social Scale,Scene Scale编码器的输入拼接。

  • \(h_i^t = \varphi(p_t^i, s_o^{i,t}, s_c^{i,t}) = p_t^i \oplus s_o^{i,t} \oplus s_c^{i,t}\)
  • [注意]:原文描述与源代码实现存在出入,原文\(h_i^t\)的计算部分是\(1<=t<=obs\),但源代码并不是这样实现的,详情请见下文。

模型迭代:

\[\hat h_t^i = LSTM^{dec}(\hat h_{t-1}^i, h_t^i, W_d)\]

\[(\hat x_i^t, \hat y_i^t) = W_o\hat h_t^i + b_o \]

[注意]:与Social LSTM,Spatio-Temporal Attention Network等不同的是,SS-LSTM模型的decoder输出不再是基于高斯二维分布,而是直接将Decoder的输出经线性变换后即得到预测轨迹的坐标值



SS-LSTM模型细节内容探讨

在阅读SS-LSTM的原文时由于阅读能力不足/文章描述不充分导致对模型部分细节存在疑惑,好在原文中提供了模型的源代码,因而解答了这些疑惑,在此做一些记录。若笔者理解存在问题,恳请批评指正。

Question 1

模型训练时的损失函数?

模型对于Decoder的输出并未采用二维高斯分布的假设,因此无法使用negative log-likelihood作为损失函数。经过笔者阅读,尚未在原文中发现有关损失函数的描述,在源代码中损失函数采用Mean Square Error。


Question 2

对于Decoder的LSTM,其每步迭代过程中的输入是什么?

原文有指明Decoder每步运行的输入:\(h_i^t = \varphi(p_t^i, s_o^{i,t}, s_c^{i,t}) = p_t^i \oplus s_o^{i,t} \oplus s_c^{i,t}\)(即对应的三个encoder每一步输出的拼接值),但放在实际情况中存在几个矛盾:

  • \(obs\_length < pred\_length\),则没有足够的\(h_i^t\)可以提供。
  • 即使有足够的\(h_i^t\),decoder最多能够预测到\(obs\_length+1\)时刻的位置,因为若要预测\(obs\_length+2\)则需要三个encoder提供对应信息,而实际上又无法提供。

根据查阅源代码,模型中Decoder每运行一步时输入都是一样的,为person scale, social scale, scene scale三个Encoder最终一次输出拼接得到的向量。这是一种Seq2Seq模型中较为简单的模型,在解码时都没有使用Decoder上一步的输出作为输入。

model = Sequential()
model.add(Merge([scene_scale, group_model, person_model], mode='sum'))
model.add(RepeatVector(predicting_frame_num))   # 复制拼接向量,使decoder每步输入都一致。
model.add(GRU(128,input_shape=(predicting_frame_num, 2),batch_size=batch_size,return_sequences=True,stateful=False,dropout=0.2))

因此回到上文中文中所给出的SS-LSTM模型的整体结构(见下图),连接线展现出三个Encoder每步运算后得到的输出都参与了Decoder输入的拼接,但这与源代码是存在矛盾的

1616500-20190808233246054-1482220918.png


Question 3

通过CNN抽取的背景图像特征\(F_t\),是否需要有下标t?(是否需要虽时间发生变化)

严格来说是需要的,但是由于Scene Scale主要用于捕获图像的非行人特征,而不同时间段图像特征的差异主要在行人,因此\(LSTM_3^{enc}\)的每一步输入可以是一致的,源代码中采用这种思路,即对于每个行人的轨迹预测,抹去了图像特征的时间因素

scene_scale = CNN(dimensions_1[1], dimensions_1[0])
scene_scale.add(RepeatVector(tsteps)) # 复制CNN输出tsteps=obs_length次,使lstm每步输入相同
scene_scale.add(GRU(hidden_size,input_shape=(tsteps, 512),batch_size=batch_size,return_sequences=False,stateful=False,dropout=0.2))


Question 4

圆形的邻近区域的数据存储方式?

如下图,对于矩形区域,Occupancy Map的形状为[4,4]或[4x4];而对于圆形区域,Map可按照自行编码习惯映射为矩阵或向量,例如,以半径为第一维度,圆角为第二维度,则Map形状为[3,4]或[3x4]

1616500-20190808233332222-591505476.png

Article:

H. Xue, D. Q. Huynh and M. Reynolds, "SS-LSTM: A Hierarchical LSTM Model for Pedestrian Trajectory Prediction," 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, 2018, pp. 1186-1194.

Code - implemented with keras:

  • link: https://github.com/xuehaouwa/SS-LSTM
  • The codes is not complete: datasets, self-defined function, program entry of train & sample and etc. So codes are not directly runnable.

转载于:https://www.cnblogs.com/sinoyou/p/11324571.html

这篇关于文献及代码阅读报告 - SS-LSTM:A Hierarchical LSTM Model for Pedestrian Trajectory Prediction...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/268839

相关文章

HTML5的input标签的`type`属性值详解和代码示例

《HTML5的input标签的`type`属性值详解和代码示例》HTML5的`input`标签提供了多种`type`属性值,用于创建不同类型的输入控件,满足用户输入的多样化需求,从文本输入、密码输入、... 目录一、引言二、文本类输入类型2.1 text2.2 password2.3 textarea(严格

JAVA项目swing转javafx语法规则以及示例代码

《JAVA项目swing转javafx语法规则以及示例代码》:本文主要介绍JAVA项目swing转javafx语法规则以及示例代码的相关资料,文中详细讲解了主类继承、窗口创建、布局管理、控件替换、... 目录最常用的“一行换一行”速查表(直接全局替换)实际转换示例(JFramejs → JavaFX)迁移建

Go异常处理、泛型和文件操作实例代码

《Go异常处理、泛型和文件操作实例代码》Go语言的异常处理机制与传统的面向对象语言(如Java、C#)所使用的try-catch结构有所不同,它采用了自己独特的设计理念和方法,:本文主要介绍Go异... 目录一:异常处理常见的异常处理向上抛中断程序恢复程序二:泛型泛型函数泛型结构体泛型切片泛型 map三:文

MyBatis中的两种参数传递类型详解(示例代码)

《MyBatis中的两种参数传递类型详解(示例代码)》文章介绍了MyBatis中传递多个参数的两种方式,使用Map和使用@Param注解或封装POJO,Map方式适用于动态、不固定的参数,但可读性和安... 目录✅ android方式一:使用Map<String, Object>✅ 方式二:使用@Param

SpringBoot实现图形验证码的示例代码

《SpringBoot实现图形验证码的示例代码》验证码的实现方式有很多,可以由前端实现,也可以由后端进行实现,也有很多的插件和工具包可以使用,在这里,我们使用Hutool提供的小工具实现,本文介绍Sp... 目录项目创建前端代码实现约定前后端交互接口需求分析接口定义Hutool工具实现服务器端代码引入依赖获

利用Python在万圣节实现比心弹窗告白代码

《利用Python在万圣节实现比心弹窗告白代码》:本文主要介绍关于利用Python在万圣节实现比心弹窗告白代码的相关资料,每个弹窗会显示一条温馨提示,程序通过参数方程绘制爱心形状,并使用多线程技术... 目录前言效果预览要点1. 爱心曲线方程2. 显示温馨弹窗函数(详细拆解)2.1 函数定义和延迟机制2.2

Springmvc常用的注解代码示例

《Springmvc常用的注解代码示例》本文介绍了SpringMVC中常用的控制器和请求映射注解,包括@Controller、@RequestMapping等,以及请求参数绑定注解,如@Request... 目录一、控制器与请求映射注解二、请求参数绑定注解三、其他常用注解(扩展)四、注解使用注意事项一、控制

C++简单日志系统实现代码示例

《C++简单日志系统实现代码示例》日志系统是成熟软件中的一个重要组成部分,其记录软件的使用和运行行为,方便事后进行故障分析、数据统计等,:本文主要介绍C++简单日志系统实现的相关资料,文中通过代码... 目录前言Util.hppLevel.hppLogMsg.hppFormat.hppSink.hppBuf

VS Code中的Python代码格式化插件示例讲解

《VSCode中的Python代码格式化插件示例讲解》在Java开发过程中,代码的规范性和可读性至关重要,一个团队中如果每个开发者的代码风格各异,会给代码的维护、审查和协作带来极大的困难,这篇文章主... 目录前言如何安装与配置使用建议与技巧如何选择总结前言在 VS Code 中,有几款非常出色的 pyt

利用Python将PDF文件转换为PNG图片的代码示例

《利用Python将PDF文件转换为PNG图片的代码示例》在日常工作和开发中,我们经常需要处理各种文档格式,PDF作为一种通用且跨平台的文档格式,被广泛应用于合同、报告、电子书等场景,然而,有时我们需... 目录引言为什么选择 python 进行 PDF 转 PNG?Spire.PDF for Python