简单单调栈的运用,悬线法---最大子矩阵,整除分块(规律+分块边界)

本文主要是介绍简单单调栈的运用,悬线法---最大子矩阵,整除分块(规律+分块边界),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简单单调栈的运用

牛客一站到底 最优屏障
题意:有n座山,高度位ai,山上的士兵能相互监督当且仅当max(ai+1...aj-1)<min(ai,aj)
M国的防守能力大小为相互监视的哨兵对数,H国家可以放一块巨大屏障在某山前,以便最大消弱M方式能力
计算最优的屏障放置位置和最大的防守力减少量
 n≤50000
思路:屏障的放置将大区间分为左右两个独立区间,知道大区间的的值
在枚举屏障放置点,关键在与预处理左右两个独立区间
用栈处理左右区间,分为从后往前看,从前往后看两种
处理,添加一个数进来,能产生对数的是前面比之小的单调递减区间
 

#include<iostream>
#include<algorithm>
#include<map>
#include<set>
#include<queue>
#include<cstring>
#include<math.h>
#include<map>
#include<vector>
#include<stack>
#define endl '\n'
#define ios ios::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr)
#define ms(x,y) memset(x,y,sizeof x);
#define YES cout<<"YES"<<'\n';
#define NO  cout<<"NO"<<'\n';
#define fr(i,z,n) for(int i = z;i <= n; i++)
#define ufr(i,n,z) for(int i = n;i >= z; i--)
typedef long long ll;
const ll maxn=2e5+10,inf = 1e18 ; 
const ll mod = 1e9 + 7;
using namespace std;
int a[maxn];
int v1[maxn];             //记录从后往前看
int v2[maxn];                     //从前往后看
stack<int>s;signed main()
{int t;scanf("%d", &t);for (int Case = 1; Case <= t; Case++) {memset(v1, 0, sizeof(v1));memset(v2, 0, sizeof(v2));while (!s.empty()) {s.pop();}int n;scanf("%d", &n);fr(i, 1, n) {scanf("%d", &a[i]);}for (int i = 1; i <= n; i++) {                 //从后往前看v1[i] = v1[i - 1];int t = 0;while (!s.empty() && s.top() < a[i]) {s.pop();t++;}if (!s.empty())  v1[i] += t + 1;else   v1[i] += t;s.push(a[i]);}while (!s.empty()) {s.pop();}for (int i = n; i >= 1; i--) {              //从前往后看v2[i] = v2[i + 1];int t = 0;while (!s.empty() && s.top() < a[i]) {s.pop();t++;}if (!s.empty())  v2[i] += t + 1;else   v2[i] += t;s.push(a[i]);}int ans = 0, id = 0;fr(i, 1, n) {int x = v1[n] - (v1[i] + v2[i + 1]);if (x > ans) {ans = x;id = i;}}id += 1;//Case #1: 2 2cout << "Case #" << Case << ": " << id << ' ' << ans << '\n';}
}

悬线法---最大子矩阵


HISTOGRA - Largest Rectangle in a Histogram
在一条水平线上有 n 个宽为1 的矩形,求包含于这些矩形的最大子矩形面积、
时间复杂度O(n)

#include <algorithm>
#include <cstdio>
using std::max;
const int N = 100010;
int n, a[N];
int l[N], r[N];         //l[i]表示a[i]向左能扩展到的位置,r[i]表示向右能扩展到的位置
long long ans;int main() {while (scanf("%d", &n) != EOF && n) {ans = 0;for (int i = 1; i <= n; i++) scanf("%d", &a[i]), l[i] = r[i] = i;for (int i = 1; i <= n; i++)while (l[i] > 1 && a[i] <= a[l[i] - 1]) l[i] = l[l[i] - 1];for (int i = n; i >= 1; i--)while (r[i] < n && a[i] <= a[r[i] + 1]) r[i] = r[r[i] + 1];for (int i = 1; i <= n; i++)ans = max(ans, (long long)(r[i] - l[i] + 1) * a[i]);printf("%lld\n", ans);}return 0;
}


P4147 玉蟾宫
给定n*m的矩阵,每一格为F或R,找到最大的全为F的矩形土地,输出面积*3
n<=m<=1000
思路:同HISTOGRA - Largest Rectangle in a Histogram,将每一行的位置向上扩展作为悬线长度
时间复杂度O(n*m)

#include <algorithm>
#include <cstdio>
#include<iostream>
using namespace std;
int m, n, a[1010], l[1010], r[1010], ans;
int main() {cin >> n >> m;int ans = 0;for (int i = 1; i <= n; i++) {for (int j = 1; j <= m; j++) {l[j] = r[j] = j;}char s;for (int j = 1; j <= m; j++) {cin >> s;if (s == 'F') {a[j]++;}else {a[j] = 0;}}        for (int j = 1; j <= m; j++) {while (l[j] > 1 && a[j] <= a[l[j] - 1])l[j] = l[l[j] - 1];}for (int j = m; j >=1; j--) {while (r[j] < m && a[j] <= a[r[j] + 1])   r[j] = r[r[j] + 1];}for (int j = 1; j <= m; j++) {ans = max(ans, a[j] * (r[j] - l[j] + 1));}} cout << 3*ans << '\n';
}


洛谷
感觉不错 Feel Good
给出正整数n 和一个长度为n 的数列a,要求找出一个子区间[l, r],
使这个子区间的数字和乘上子区间中的最小值最大。输出这个最大值与区间的两个端点
在答案相等的情况下最小化区间长度,最小化长度的情况下最小化左端点序号。
思路:寻找每一个结点的左右扩展,利用前缀和求出答案

#include <cstdio>
#include <cstring>
const int N = 100010;
int n, a[N], l[N], r[N];
long long sum[N];
long long ans;
int ansl, ansr;
bool fir = 1;int main() {while (scanf("%d", &n) != EOF) {memset(a, -1, sizeof(a));if (!fir)printf("\n");elsefir = 0;ans = 0;ansl = ansr = 1;for (int i = 1; i <= n; i++) {scanf("%d", &a[i]);sum[i] = sum[i - 1] + a[i];l[i] = r[i] = i;}for (int i = 1; i <= n; i++)while (a[l[i] - 1] >= a[i]) l[i] = l[l[i] - 1];for (int i = n; i >= 1; i--)while (a[r[i] + 1] >= a[i]) r[i] = r[r[i] + 1];for (int i = 1; i <= n; i++) {long long x = a[i] * (sum[r[i]] - sum[l[i] - 1]);if (ans < x || (ans == x && ansr - ansl > r[i] - l[i]))ans = x, ansl = l[i], ansr = r[i];}printf("%lld\n%d %d\n", ans, ansl, ansr);}return 0;
}

整除分块(规律+分块边界)


1.f(n)=n/i的和 (1<=i<=n) 
以l为左边界,k=n/l, 右边界r为k的最大下标i,找到最大的i满足i<=n/k
带入k,r=n/(n/l)

#include<iostream>
using namespace std;
int main()
{ int ans = 0;int n;cin >> n;for (int l = 1, r; l <= n; l = r + 1) {r = n / (n / l);cout << l << ' ' << r << '\n';ans += (n / l) * (r - l + 1);}cout << ans << '\n';return 0;
}


P1403 [AHOI2005] 约数研究
f(n)表示n的约数的个数
求f(i)的和  (1<=i<=n)
思路:约数的性质满足每个正约数i在1~n中出现的个为n/i
直接套用整除分块板子

#include<iostream>
using namespace std;
int main()
{int ans = 0;int n;cin >> n;for (int l = 1, r; l <= n; l = r + 1) {r = n / (n / l);//cout << l << ' ' << r << '\n';ans += (n / l) * (r - l + 1);}cout << ans << '\n';return 0;
}


P2424 约数和
f(x)表示x的所有约数和,求f(x)+f(x+1)...+f(y)
思路:约数的性质满足每个正约数i在1~n中出现的个为n/i,于是约数对总和的贡献为i*n/i
在区间[l,r]满足n/i为常数,等差数列求出
 

ans=cal(y)-cla(x-1)
#include<iostream>
#include<algorithm>
#define int long long
using namespace std;
int a[1000];
int cal(int n) {int res = 0;for (int l = 1, r; l <= n; l = r + 1) {r = n / (n / l);//res += (n / l) * (r - l + 1) / 2;res += (n / l) * (l + r) * (r - l + 1) / 2;}return res;
}
signed main()
{int x, y;cin >> x >> y;cout << cal(y) - cal(x - 1) << '\n';return 0;
}
P2261 [CQOI2007] 余数求和
给定n,k,计算k%i的和,求(1<=i<=n)
n,k<=1e9
思路:对于a%b  -> a-b*(a/b)
k%i ->k-i*(k/i)
ans=k-i*(k/i)的和 (1<=i<=n)
#include<iostream>
#include<algorithm>
#define int long long
using namespace std;
signed main()
{int n, k;cin >> n >> k;int ans = n*k;for (int l = 1, r; l <= n; l = r + 1) {if (k / l != 0)                        //防止rer = min(k / (k / l), n);elser = n;ans -= (k / l) * (l + r) * (r - l + 1) / 2;}cout << ans << '\n';return 0;
}

这篇关于简单单调栈的运用,悬线法---最大子矩阵,整除分块(规律+分块边界)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/266991

相关文章

基于Qt开发一个简单的OFD阅读器

《基于Qt开发一个简单的OFD阅读器》这篇文章主要为大家详细介绍了如何使用Qt框架开发一个功能强大且性能优异的OFD阅读器,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 目录摘要引言一、OFD文件格式解析二、文档结构解析三、页面渲染四、用户交互五、性能优化六、示例代码七、未来发展方向八、结论摘要

如何提高Redis服务器的最大打开文件数限制

《如何提高Redis服务器的最大打开文件数限制》文章讨论了如何提高Redis服务器的最大打开文件数限制,以支持高并发服务,本文给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录如何提高Redis服务器的最大打开文件数限制问题诊断解决步骤1. 修改系统级别的限制2. 为Redis进程特别设置限制

MyBatis框架实现一个简单的数据查询操作

《MyBatis框架实现一个简单的数据查询操作》本文介绍了MyBatis框架下进行数据查询操作的详细步骤,括创建实体类、编写SQL标签、配置Mapper、开启驼峰命名映射以及执行SQL语句等,感兴趣的... 基于在前面几章我们已经学习了对MyBATis进行环境配置,并利用SqlSessionFactory核

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

hdu2289(简单二分)

虽说是简单二分,但是我还是wa死了  题意:已知圆台的体积,求高度 首先要知道圆台体积怎么求:设上下底的半径分别为r1,r2,高为h,V = PI*(r1*r1+r1*r2+r2*r2)*h/3 然后以h进行二分 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#includ

usaco 1.3 Prime Cryptarithm(简单哈希表暴搜剪枝)

思路: 1. 用一个 hash[ ] 数组存放输入的数字,令 hash[ tmp ]=1 。 2. 一个自定义函数 check( ) ,检查各位是否为输入的数字。 3. 暴搜。第一行数从 100到999,第二行数从 10到99。 4. 剪枝。 代码: /*ID: who jayLANG: C++TASK: crypt1*/#include<stdio.h>bool h

uva 10387 Billiard(简单几何)

题意是一个球从矩形的中点出发,告诉你小球与矩形两条边的碰撞次数与小球回到原点的时间,求小球出发时的角度和小球的速度。 简单的几何问题,小球每与竖边碰撞一次,向右扩展一个相同的矩形;每与横边碰撞一次,向上扩展一个相同的矩形。 可以发现,扩展矩形的路径和在当前矩形中的每一段路径相同,当小球回到出发点时,一条直线的路径刚好经过最后一个扩展矩形的中心点。 最后扩展的路径和横边竖边恰好组成一个直

poj 1113 凸包+简单几何计算

题意: 给N个平面上的点,现在要在离点外L米处建城墙,使得城墙把所有点都包含进去且城墙的长度最短。 解析: 韬哥出的某次训练赛上A出的第一道计算几何,算是大水题吧。 用convexhull算法把凸包求出来,然后加加减减就A了。 计算见下图: 好久没玩画图了啊好开心。 代码: #include <iostream>#include <cstdio>#inclu

uva 10130 简单背包

题意: 背包和 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vector>#include <queue>#include <map>

poj 3723 kruscal,反边取最大生成树。

题意: 需要征募女兵N人,男兵M人。 每征募一个人需要花费10000美元,但是如果已经招募的人中有一些关系亲密的人,那么可以少花一些钱。 给出若干的男女之间的1~9999之间的亲密关系度,征募某个人的费用是10000 - (已经征募的人中和自己的亲密度的最大值)。 要求通过适当的招募顺序使得征募所有人的费用最小。 解析: 先设想无向图,在征募某个人a时,如果使用了a和b之间的关系