#1024 程序员节 大图像中的小目标检测——基于YOLOV8+OnnxRuntime部署+滑动窗口+Zbar的条码检测研究

本文主要是介绍#1024 程序员节 大图像中的小目标检测——基于YOLOV8+OnnxRuntime部署+滑动窗口+Zbar的条码检测研究,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 1 训练一个YOLOV8的一维码检测模型
  • 2 创建滑动窗口
    • 2.1 模块导入与测试图片展示
    • 2.2 创建滑动窗口检测,窗口大小为(640,640),滑动距离为640。对不足(640,640)的窗口进行填充
  • 3 创建onnxruntime推理引擎
    • 3.1推理测试
    • 3.2获得ONNX模型输入层(输出层)和数据维度
    • 3.3 预处理-构造输入张量 torch_list
  • 4 执行推理预测
  • 5 后处理-置信度过滤、NMS过滤
    • 5.1解析目标检测预测结果
  • 6 opencv 可视化
  • 7 检测完的切片重新放回原图
  • 8 用Zbar识别二维码
    • 8.1条码剪切
    • 8.1 筛选出选合格的条码
  • 总结
  • 相关文章

原创声明:如有转载请注明文章来源。码字不易,如对卿有所帮助,欢迎评论、点赞、收藏。
本文为深度学习的条码检测方案,如需传统算法的条码检测方案请阅读(基于Opencv+Kmeans+Zbar的条码检测与基于锐化+双边高斯滤波+Zbar的条码检测在工业光伏产线上的检测效果研究)

前言

最近项目中用到了条码检测,查阅很多资料,说用Zbar等工具检测的比较多。但是我们会发现,检测是不稳定的,Zbar是解析条码的工具包,运用好它的前提是:能够准确将条码区域提取出来,以及图像质量(分辨率、打光效果等)要把握很好。本文基于YOLOV8+OnnxRuntime部署+滑动窗口+Zbar对于条码检测进行升级,可以有效解决条码检测问题,并且速度也很高。

1 训练一个YOLOV8的一维码检测模型

  • 关于如何训练模型不是本文的重点,可以根据这篇文章简单训练一个模型(YOLOV8目标检测——模型训练)

  • 如果需要本人训练好的模型可以在点击这里下载( 文章顶部文件包:best.pt、best.onnx、 数据集、实验图片)

  • 当然若有训练和环境的相关问题,可以在评论里写明。看到一定回复。

2 创建滑动窗口

2.1 模块导入与测试图片展示

import cv2
import numpy as np
from PIL import Imageimport onnxruntimeimport torch
# 有 GPU 就用 GPU,没有就用 CPU
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')import matplotlib.pyplot as plt
%matplotlib inline
```在这里插入图片描述```python
# 显示图片
image = cv2.imread("D:/yolov8/data/images/Pic_2023_04_18_104022_3.bmp")
plt.imshow(image[:,:,::-1])
image_1 = image.copy()

在这里插入图片描述

2.2 创建滑动窗口检测,窗口大小为(640,640),滑动距离为640。对不足(640,640)的窗口进行填充

win = 0 
image_list = [] # 用来存储滑动窗口
while(win<4000):img_test = image[340:980,win:win+640]if img_test.shape[1]<640:top = 0bottom = 0left = 0right = 640-img_test.shape[1]img_test = cv2.copyMakeBorder(img_test,top,bottom,left,right,cv2.BORDER_CONSTANT,value=[255,255,255])  image_list.append(img_test)win = win + 640

展示窗口切片

for i in range(len(image_list)):plt.subplot(2,4,i+1)plt.imshow(image_list[i][:,:,::-1])
plt.show()

在这里插入图片描述

3 创建onnxruntime推理引擎

ort_session = onnxruntime.InferenceSession('E:/ultralytics/runs/detect/train4/weights/best.onnx', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])

3.1推理测试

x = torch.randn(1, 3, 640, 640).numpy()
ort_inputs = {'images': x}
ort_output = ort_session.run(['output0'], ort_inputs)[0]
ort_output

输出了结果,说明onnxruntime引擎没有问题。
在这里插入图片描述

3.2获得ONNX模型输入层(输出层)和数据维度

在这里插入图片描述
在这里插入图片描述

3.3 预处理-构造输入张量 torch_list

这里是标准的yolov8输入图像的预处理模式

# 有 GPU 就用 GPU,没有就用 CPU
torch_list = []
for i in range(len(image_list)):
# 预处理-归一化image = image_list[i][:,:,::-1]image = image / 255# 预处理-构造输入 Tensorimage = np.expand_dims(image, axis=0) # 加 batch 维度image = image.transpose((0, 3, 1, 2)) # N, C, H, Wimage = np.ascontiguousarray(image)   # 将内存不连续存储的数组,转换为内存连续存储的数组,使得内存访问速度更快image = torch.from_numpy(image).to(device).float() # 转 Pytorch Tensor# input_tensor = input_tensor.half() # 是否开启半精度,即 uint8 转 fp16,默认转 fp32 torch_list.append(image)

可以查看一下相关数据
在这里插入图片描述

4 执行推理预测

当你在对切片处理的时候,还需要用字典去标记切片的,即:{切片:目标检测结果}。这个字典是贯穿始终的,能够保证最后把检测之后的切片,贴到原图的时候,知道那个预测结果是哪个窗口预测得来的。

preds_dict = {}for i in range(len(torch_list)):# ONNX Runtime 推理预测ort_output = ort_session.run(output_name, {input_name[0]: torch_list[i].cpu().numpy()})[0]# 转 Tensorpreds = torch.Tensor(ort_output)preds_dict[str(i)] = preds

在这里插入图片描述

5 后处理-置信度过滤、NMS过滤

from ultralytics.utils import ops
for i in range(len(preds_dict)):pred = ops.non_max_suppression(preds_dict[str(i)], conf_thres=0.7, iou_thres=0.7, nc=1)preds_dict[str(i)] = pred[0]

经过非极大值抑制,条码基本都被标记出来了。
在这里插入图片描述

5.1解析目标检测预测结果

pred_det = []
num_bboxs = {} # 画框框的记录,需要标记好每个切片的目标检测数量
for i in range(len(preds_dict)):det = preds_dict[str(i)][:,0:6].cpu().numpy()preds_dict[str(i)] = detnum_bboxs[str(i)] = len(det)

这里的类别会变成0,本文中0代表条码
在这里插入图片描述

6 opencv 可视化

# 框(rectangle)可视化配置
bbox_color = (150, 0, 0)             # 框的 BGR 颜色
bbox_thickness = 6                   # 框的线宽# 框类别文字
bbox_labelstr = {'font_size':2,         # 字体大小'font_thickness':3,   # 字体粗细'offset_x':0,          # X 方向,文字偏移距离,向右为正'offset_y':-10,        # Y 方向,文字偏移距离,向下为正
}
for i in range(len(preds_dict)):# 遍历每个框for j in range(len(preds_dict[str(i)])):# 获取该框坐标bboxes_xyxy = preds_dict[str(i)][:, :4].astype('uint32')bbox_xyxy = bboxes_xyxy[j] # 获取框的预测类别(对于关键点检测,只有一个类别)bbox_label = 'code'# 画框image_list[i] = cv2.rectangle(image_list[i], (bbox_xyxy[0], bbox_xyxy[1]), (bbox_xyxy[2], bbox_xyxy[3]), bbox_color, bbox_thickness)# 写框类别文字:图片,文字字符串,文字左上角坐标,字体,字体大小,颜色,字体粗细image_list[i] = cv2.putText(image_list[i], bbox_label, (bbox_xyxy[0]+bbox_labelstr['offset_x'], bbox_xyxy[1]+bbox_labelstr['offset_y']), cv2.FONT_HERSHEY_SIMPLEX, bbox_labelstr['font_size'], bbox_color, bbox_labelstr['font_thickness'])
for i in range(len(image_list)):plt.subplot(2,4,i+1)plt.imshow(image_list[i][:,:,::-1])
plt.show()

运行结果如下:
在这里插入图片描述

7 检测完的切片重新放回原图

wide = 0for i in range(len(image_list)):  wide += 640if wide < 4000:image_1[340:980,i*640:640*(i+1)] = image_list[i]else:image_1[340:980,3840:4000] = image_list[i][:,0:160]
plt.imshow(image_1[:,:,::-1])

在这里插入图片描述

8 用Zbar识别二维码

8.1条码剪切

codes = []
for i in range(len(preds_dict)): # 遍历每个框for j in range(len(preds_dict[str(i)])):# 获取该框坐标bboxes_xyxy = preds_dict[str(i)][:, :4].astype('uint32') # 目标检测预测结果:左上角X、左上角Y、右下角X、右下角Y、置信度、类别IDbbox_xyxy = bboxes_xyxy[j] code = image_list[i][bbox_xyxy[1]:bbox_xyxy[3],bbox_xyxy[0]:bbox_xyxy[2]]codes.append(code)
# 展示一下提取到的条码图片
for i in range(len(codes)):plt.subplot(4,5,i+1)plt.imshow(codes[i],cmap="gray")
plt.show()

此时我们会发现条码中是有一个条码被标注上两个框的。15个目标,但涵盖了16个检测框。
在这里插入图片描述

8.1 筛选出选合格的条码

条码的宽度如果小于条码的一半,则剔除该条码

for code in codes:if code.shape[1]<20:  # 去除宽度小于20的条码codes.remove(code)
```python
# 展示一下提取到的条码图片
for i in range(len(codes)):plt.subplot(4,5,i+1)plt.imshow(codes[i],cmap="gray")
plt.show()

在这里插入图片描述

from pyzbar import pyzbar
res_1=[]
for i in range(len(codes)):res = pyzbar.decode(codes[i])res_1.append(res)
res_1

在这里插入图片描述
但是我们会发现,最后检测出的15个目标,只有14个条码。那是因为在滑动窗口中是需要去调节滑动窗口的大小以及滑动的距离。总得来说,将滑动距离从640变为320会是比较好的选择,最后对于检测出的条码再做一下处理即可。

总结

市面上有很多条码、二维码检测的算法,最让人印象深刻的就是腾讯微信扫码——基于SSD和超分算法的二维码检测方式。本文深受启发,将SSD的提取网络换成YOLOV8,将二维码的提取换成一维码。总的来说,试一次不错的体验。
本人是一名计算机视觉应用工程师,喜欢将算法应用于实际当中,这是自己的乐趣,如有什么需要讨论,欢迎评论区留言。
如您百忙之中还看到了这里,那是缘分。想来您和我一样对深度学习的应用深有兴趣,还请您帮忙点个赞,以便于更多的你我这样的人发现本文章,谢谢。

相关文章

基于Opencv+Kmeans+Zbar的条码检测与基于锐化+双边高斯滤波+Zbar的条码检测在工业光伏产线上的检测效果研究

这篇关于#1024 程序员节 大图像中的小目标检测——基于YOLOV8+OnnxRuntime部署+滑动窗口+Zbar的条码检测研究的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/263185

相关文章

OpenCV图像形态学的实现

《OpenCV图像形态学的实现》本文主要介绍了OpenCV图像形态学的实现,包括腐蚀、膨胀、开运算、闭运算、梯度运算、顶帽运算和黑帽运算,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起... 目录一、图像形态学简介二、腐蚀(Erosion)1. 原理2. OpenCV 实现三、膨胀China编程(

MySQL高级查询之JOIN、子查询、窗口函数实际案例

《MySQL高级查询之JOIN、子查询、窗口函数实际案例》:本文主要介绍MySQL高级查询之JOIN、子查询、窗口函数实际案例的相关资料,JOIN用于多表关联查询,子查询用于数据筛选和过滤,窗口函... 目录前言1. JOIN(连接查询)1.1 内连接(INNER JOIN)1.2 左连接(LEFT JOI

Spring Boot项目部署命令java -jar的各种参数及作用详解

《SpringBoot项目部署命令java-jar的各种参数及作用详解》:本文主要介绍SpringBoot项目部署命令java-jar的各种参数及作用的相关资料,包括设置内存大小、垃圾回收... 目录前言一、基础命令结构二、常见的 Java 命令参数1. 设置内存大小2. 配置垃圾回收器3. 配置线程栈大小

tomcat多实例部署的项目实践

《tomcat多实例部署的项目实践》Tomcat多实例是指在一台设备上运行多个Tomcat服务,这些Tomcat相互独立,本文主要介绍了tomcat多实例部署的项目实践,具有一定的参考价值,感兴趣的可... 目录1.创建项目目录,测试文China编程件2js.创建实例的安装目录3.准备实例的配置文件4.编辑实例的

SpringBoot配置Ollama实现本地部署DeepSeek

《SpringBoot配置Ollama实现本地部署DeepSeek》本文主要介绍了在本地环境中使用Ollama配置DeepSeek模型,并在IntelliJIDEA中创建一个Sprin... 目录前言详细步骤一、本地配置DeepSeek二、SpringBoot项目调用本地DeepSeek前言随着人工智能技

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

通过Docker Compose部署MySQL的详细教程

《通过DockerCompose部署MySQL的详细教程》DockerCompose作为Docker官方的容器编排工具,为MySQL数据库部署带来了显著优势,下面小编就来为大家详细介绍一... 目录一、docker Compose 部署 mysql 的优势二、环境准备与基础配置2.1 项目目录结构2.2 基

CentOS 7部署主域名服务器 DNS的方法

《CentOS7部署主域名服务器DNS的方法》文章详细介绍了在CentOS7上部署主域名服务器DNS的步骤,包括安装BIND服务、配置DNS服务、添加域名区域、创建区域文件、配置反向解析、检查配置... 目录1. 安装 BIND 服务和工具2.  配置 BIND 服务3 . 添加你的域名区域配置4.创建区域

Vue 调用摄像头扫描条码功能实现代码

《Vue调用摄像头扫描条码功能实现代码》本文介绍了如何使用Vue.js和jsQR库来实现调用摄像头并扫描条码的功能,通过安装依赖、获取摄像头视频流、解析条码等步骤,实现了从开始扫描到停止扫描的完整流... 目录实现步骤:代码实现1. 安装依赖2. vue 页面代码功能说明注意事项以下是一个基于 Vue.js

OpenManus本地部署实战亲测有效完全免费(最新推荐)

《OpenManus本地部署实战亲测有效完全免费(最新推荐)》文章介绍了如何在本地部署OpenManus大语言模型,包括环境搭建、LLM编程接口配置和测试步骤,本文给大家讲解的非常详细,感兴趣的朋友一... 目录1.概况2.环境搭建2.1安装miniconda或者anaconda2.2 LLM编程接口配置2