阿白数模笔记之粒子群法(Particle Swarm Optimization,PSO)负反馈(Degenerative Feedback)修正及MATLAB代码详解

本文主要是介绍阿白数模笔记之粒子群法(Particle Swarm Optimization,PSO)负反馈(Degenerative Feedback)修正及MATLAB代码详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

Preface

基本粒子群法(Basic particle swarm optimization)

负反馈(Degenerative Feedback)修正

MATLAB代码详解

多峰函数

 参数初始化

迭代过程

结果显示

参考文章

Preface

        粒子群优化Particle Swarm OptimizationPSO),又称微粒群算法,是由J. Kennedy和R. C. Eberhart等于1995年开发的一种演化计算技术,来源于对一个简化社会模型的模拟。其中“群(swarm)”来源于微粒群匹配M. M. Millonas在开发应用于人工生命(artificial life)的模型时所提出的群体智能的5个基本原则。“粒子(particle)”是一个折衷的选择,因为既需要将群体中的成员描述为没有质量、没有体积的,同时也需要描述它的速度和加速状态。

基本粒子群法(Basic particle swarm optimization)

        在D维空间,N个粒子组成一个群落X=(X_1,X_2,...X_N),每个粒子位置坐标是D维向量,

X_i=(x_{i1},x_{i2},...x_{iD}),i=1,2,...N,在每个维度上的速度也是D维向量V_i=(v_{i1},v_{i2},...v_{iD}),i=1,2,...D,在迭代过程中,对每一个粒子X_i,保留它迄今为止搜索到的最优位置为个体极值P_i{best}=(p_{i1},p_{i2},...p_{iD}),i=1,2,...N,整个粒子群搜索到的最优路径为G_{best}=(g_1,g_2,...g_D),每进行一次迭代,粒子的位置和速度都会更新,更新公式为

x_{ij}(t+1)=x_{ij}(t)+v_{ij}(t),i=1,2,...N,j=1,2,...D,i表示第几个粒子,j表示维度

v_{ij}(t+1)=wv_{ij}(t)+c_1*rand()*(p_{ij}-x_{ij}(t))+c_1*rand()*(gj-x_{ij}(t)),i=1,2,...N,j=1,2,...D

其中w是惯性系数,即前一次迭代速度对后一次的影响系数,p_{ij}-x_{ij}(t)表示个体目前最优极值对搜索的影响,反映了粒子的认知能力,c_1>0gj-x_{ij}(t)表示群体最优极值对个体的影响,反映了粒子的社会性行为,c_2>0,均为正反馈调节。

负反馈(Degenerative Feedback)修正

        在速度更新公式的基础上,引入负反馈调节因子c_3,c_4进行修正。在迭代过程中,对每一个粒子迄今为止搜索到的最差路径为个体极差值,P_i{worst}=(p'_{i1},p'_{i2},...p'_{iD}),i=1,2,...N,整个粒子群搜索到的最优路径为G_{worst}=(g'_1,g'_2,...g'_D),修正后的速度更新公式为v_{ij}(t+1)=wv_{ij}(t)+c_1*rand()*(p_{ij}-x_{ij}(t))+c_1*rand()*(gj-x_{ij}(t))+c_3*rand()*(p'_{ij}-x_{ij}(t))+c_4*rand()*(g'_j-x_{ij}(t)),i=1,2,...N,j=1,2,...D,其中

c_3<0,c_4<0,表示负反馈调节,增强了个体的认知能力的社会能力。

MATLAB代码详解

多峰函数

        这是待求极小值的多峰函数

function v=func3(x)
v=((1*cos((1+1).*x(1)+1))+(2*cos((2+1).*x(1)+2))+(3*cos((3+1).*x(1)+3))+...(4*cos((4+1).*x(1)+4))+(5*cos((5+1).*x(1)+5))).*((1*cos((1+1).*x(2)+1))+...(2*cos((2+1).*x(2)+2))+(3*cos((3+1).*x(2)+3))+(4*cos((4+1).*x(2)+4))+(5*cos((5+1).*x(2)+5)));
end
x=linspace(-10,10,2000);
y=x;
z=meshgrid(x,y);
for i=1:size(x,2)for j=1:size(x,2)z(i,j)=func3([x(i),y(j)]);end
end
mesh(x,y,z);

 参数初始化

clear all; %清除所有变量
close all; %清图
clc; %清屏
N = 100; %群体粒子个数
D = 2; %粒子维数
T = 200; %最大迭代次数
c1 = 1.5; %正反馈调节因子1
c2 = 1.5; %正反馈调节因子2
c3=-0.5;%负反馈调节因子1
c4=-0.5;%负反馈调节因子2
Wmax = 0.8; %惯性权重最大值
Wmin = 0.4; %惯性权重最小值
Xmax = 10; %位置最大值
Xmin = -10; %位置最小值
Vmax = 1; %速度最大值,当更新后速度v>Vmax,取v=Vmax
Vmin = -1; %速度最小值,当更新后速度v<Vmin,取v=Vmin
%%%%%%%%%%%%初始化种群个体(限定位置和速度)%%%%%%%%%%%%
x = rand(N,D) * (Xmax-Xmin)+Xmin;
v = rand(N,D) * (Vmax-Vmin)+Vmin;%%%%%%%%%%%%%初始化个体最优位置最优值以及最差位置最差值%%%%%%%%%%%%%
p = x;
pw=x;
pbest = ones(N,1);
for i = 1:Npbest(i) = func3(x(i,:));
end
pworst=pbest;%初始时刻个体最优值也是最差值%%%%%%%%%%%%%初始化全局最优位置和最优值%%%%%%%%%%%%
g = ones(1,D);
gw=ones(1,D);
gbest = inf;
gworst=-inf;
for i = 1:Nif(pbest(i) < gbest)g = p(i,:);gbest = pbest(i);elseif (pbest(i)>gworst)gw=p(i,:);gworst=pbest(i);end
end
gb = ones(1,T);%记录每次迭代最优值

迭代过程

%%%%%%%%%按照公式依次迭代直到满足精度或者迭代次数%%%%%%%%
for i = 1:Tfor j = 1:N%%%%%%%%%更新个体最优位置和最优值%%%%%%%%%%%%%if (func3(x(j,:)) < pbest(j))p(j,:) = x(j,:);pbest(j) = func3(x(j,:));%%%%%%%%%更新个体最差位置和最差值%%%%%%%%%%%%%elseif (func3(x(j,:)) >pworst(j))pw(j,:)=x(j,:);pworst(j)= func3(x(j,:));end%%%%%%%%%%更新全局最优位置和最优值%%%%%%%%%%%%if(pbest(j) < gbest)g = p(j,:);gbest = pbest(j);%%%%%%%%%%更新最差位置和最差值%%%%%%%%%%%%elseif (pworst(j) > gworst)gw=p(j,:);gworst=pworst(j);end%%%%%%%%%%%计算动态惯性权重值%%%%%%%%%%%%%%%w = Wmax-(Wmax-Wmin)*i/T;%线性递减公式%%%%%%%%%%%%更新位置和速度值%%%%%%%%%%%%%%%v(j,:) = w*v(j,:)+c1*rand*(p(j,:)-x(j,:))...+c2*rand*(g-x(j,:))+c3*rand*(pw(j,:)-x(j,:))+c4*rand*(gw-x(j,:));x(j,:) = x(j,:)+v(j,:);%%%%%%%%%%%%%%边界条件处理%%%%%%%%%%%%%%%for ii = 1:Dif (v(j,ii) > Vmax) | (v(j,ii) < Vmin)v(j,ii) = rand * (Vmax-Vmin)+Vmin;endif (x(j,ii) > Xmax) | (x(j,ii) < Xmin)x(j,ii) = rand * (Xmax-Xmin)+Xmin;endendend%%%%%%%%%%%%%%记录历代全局最优值%%%%%%%%%%%%%%gb(i) = gbest;
end

结果显示

g  %最优个体
gb(end)  %最优值
figure
plot(gb)
xlabel('Iterations');
ylabel('Fitness value');
title('Fitness evolution curve')

参考文章

基本粒子群算法小结及算法实例(附Matlab代码)

这篇关于阿白数模笔记之粒子群法(Particle Swarm Optimization,PSO)负反馈(Degenerative Feedback)修正及MATLAB代码详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/260946

相关文章

详解Vue如何使用xlsx库导出Excel文件

《详解Vue如何使用xlsx库导出Excel文件》第三方库xlsx提供了强大的功能来处理Excel文件,它可以简化导出Excel文件这个过程,本文将为大家详细介绍一下它的具体使用,需要的小伙伴可以了解... 目录1. 安装依赖2. 创建vue组件3. 解释代码在Vue.js项目中导出Excel文件,使用第三

SQL注入漏洞扫描之sqlmap详解

《SQL注入漏洞扫描之sqlmap详解》SQLMap是一款自动执行SQL注入的审计工具,支持多种SQL注入技术,包括布尔型盲注、时间型盲注、报错型注入、联合查询注入和堆叠查询注入... 目录what支持类型how---less-1为例1.检测网站是否存在sql注入漏洞的注入点2.列举可用数据库3.列举数据库

Linux之软件包管理器yum详解

《Linux之软件包管理器yum详解》文章介绍了现代类Unix操作系统中软件包管理和包存储库的工作原理,以及如何使用包管理器如yum来安装、更新和卸载软件,文章还介绍了如何配置yum源,更新系统软件包... 目录软件包yumyum语法yum常用命令yum源配置文件介绍更新yum源查看已经安装软件的方法总结软

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

Java访问修饰符public、private、protected及默认访问权限详解

《Java访问修饰符public、private、protected及默认访问权限详解》:本文主要介绍Java访问修饰符public、private、protected及默认访问权限的相关资料,每... 目录前言1. public 访问修饰符特点:示例:适用场景:2. private 访问修饰符特点:示例:

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

详解Java如何向http/https接口发出请求

《详解Java如何向http/https接口发出请求》这篇文章主要为大家详细介绍了Java如何实现向http/https接口发出请求,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 用Java发送web请求所用到的包都在java.net下,在具体使用时可以用如下代码,你可以把它封装成一

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W