阿白数模笔记之粒子群法(Particle Swarm Optimization,PSO)负反馈(Degenerative Feedback)修正及MATLAB代码详解

本文主要是介绍阿白数模笔记之粒子群法(Particle Swarm Optimization,PSO)负反馈(Degenerative Feedback)修正及MATLAB代码详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

Preface

基本粒子群法(Basic particle swarm optimization)

负反馈(Degenerative Feedback)修正

MATLAB代码详解

多峰函数

 参数初始化

迭代过程

结果显示

参考文章

Preface

        粒子群优化Particle Swarm OptimizationPSO),又称微粒群算法,是由J. Kennedy和R. C. Eberhart等于1995年开发的一种演化计算技术,来源于对一个简化社会模型的模拟。其中“群(swarm)”来源于微粒群匹配M. M. Millonas在开发应用于人工生命(artificial life)的模型时所提出的群体智能的5个基本原则。“粒子(particle)”是一个折衷的选择,因为既需要将群体中的成员描述为没有质量、没有体积的,同时也需要描述它的速度和加速状态。

基本粒子群法(Basic particle swarm optimization)

        在D维空间,N个粒子组成一个群落X=(X_1,X_2,...X_N),每个粒子位置坐标是D维向量,

X_i=(x_{i1},x_{i2},...x_{iD}),i=1,2,...N,在每个维度上的速度也是D维向量V_i=(v_{i1},v_{i2},...v_{iD}),i=1,2,...D,在迭代过程中,对每一个粒子X_i,保留它迄今为止搜索到的最优位置为个体极值P_i{best}=(p_{i1},p_{i2},...p_{iD}),i=1,2,...N,整个粒子群搜索到的最优路径为G_{best}=(g_1,g_2,...g_D),每进行一次迭代,粒子的位置和速度都会更新,更新公式为

x_{ij}(t+1)=x_{ij}(t)+v_{ij}(t),i=1,2,...N,j=1,2,...D,i表示第几个粒子,j表示维度

v_{ij}(t+1)=wv_{ij}(t)+c_1*rand()*(p_{ij}-x_{ij}(t))+c_1*rand()*(gj-x_{ij}(t)),i=1,2,...N,j=1,2,...D

其中w是惯性系数,即前一次迭代速度对后一次的影响系数,p_{ij}-x_{ij}(t)表示个体目前最优极值对搜索的影响,反映了粒子的认知能力,c_1>0gj-x_{ij}(t)表示群体最优极值对个体的影响,反映了粒子的社会性行为,c_2>0,均为正反馈调节。

负反馈(Degenerative Feedback)修正

        在速度更新公式的基础上,引入负反馈调节因子c_3,c_4进行修正。在迭代过程中,对每一个粒子迄今为止搜索到的最差路径为个体极差值,P_i{worst}=(p'_{i1},p'_{i2},...p'_{iD}),i=1,2,...N,整个粒子群搜索到的最优路径为G_{worst}=(g'_1,g'_2,...g'_D),修正后的速度更新公式为v_{ij}(t+1)=wv_{ij}(t)+c_1*rand()*(p_{ij}-x_{ij}(t))+c_1*rand()*(gj-x_{ij}(t))+c_3*rand()*(p'_{ij}-x_{ij}(t))+c_4*rand()*(g'_j-x_{ij}(t)),i=1,2,...N,j=1,2,...D,其中

c_3<0,c_4<0,表示负反馈调节,增强了个体的认知能力的社会能力。

MATLAB代码详解

多峰函数

        这是待求极小值的多峰函数

function v=func3(x)
v=((1*cos((1+1).*x(1)+1))+(2*cos((2+1).*x(1)+2))+(3*cos((3+1).*x(1)+3))+...(4*cos((4+1).*x(1)+4))+(5*cos((5+1).*x(1)+5))).*((1*cos((1+1).*x(2)+1))+...(2*cos((2+1).*x(2)+2))+(3*cos((3+1).*x(2)+3))+(4*cos((4+1).*x(2)+4))+(5*cos((5+1).*x(2)+5)));
end
x=linspace(-10,10,2000);
y=x;
z=meshgrid(x,y);
for i=1:size(x,2)for j=1:size(x,2)z(i,j)=func3([x(i),y(j)]);end
end
mesh(x,y,z);

 参数初始化

clear all; %清除所有变量
close all; %清图
clc; %清屏
N = 100; %群体粒子个数
D = 2; %粒子维数
T = 200; %最大迭代次数
c1 = 1.5; %正反馈调节因子1
c2 = 1.5; %正反馈调节因子2
c3=-0.5;%负反馈调节因子1
c4=-0.5;%负反馈调节因子2
Wmax = 0.8; %惯性权重最大值
Wmin = 0.4; %惯性权重最小值
Xmax = 10; %位置最大值
Xmin = -10; %位置最小值
Vmax = 1; %速度最大值,当更新后速度v>Vmax,取v=Vmax
Vmin = -1; %速度最小值,当更新后速度v<Vmin,取v=Vmin
%%%%%%%%%%%%初始化种群个体(限定位置和速度)%%%%%%%%%%%%
x = rand(N,D) * (Xmax-Xmin)+Xmin;
v = rand(N,D) * (Vmax-Vmin)+Vmin;%%%%%%%%%%%%%初始化个体最优位置最优值以及最差位置最差值%%%%%%%%%%%%%
p = x;
pw=x;
pbest = ones(N,1);
for i = 1:Npbest(i) = func3(x(i,:));
end
pworst=pbest;%初始时刻个体最优值也是最差值%%%%%%%%%%%%%初始化全局最优位置和最优值%%%%%%%%%%%%
g = ones(1,D);
gw=ones(1,D);
gbest = inf;
gworst=-inf;
for i = 1:Nif(pbest(i) < gbest)g = p(i,:);gbest = pbest(i);elseif (pbest(i)>gworst)gw=p(i,:);gworst=pbest(i);end
end
gb = ones(1,T);%记录每次迭代最优值

迭代过程

%%%%%%%%%按照公式依次迭代直到满足精度或者迭代次数%%%%%%%%
for i = 1:Tfor j = 1:N%%%%%%%%%更新个体最优位置和最优值%%%%%%%%%%%%%if (func3(x(j,:)) < pbest(j))p(j,:) = x(j,:);pbest(j) = func3(x(j,:));%%%%%%%%%更新个体最差位置和最差值%%%%%%%%%%%%%elseif (func3(x(j,:)) >pworst(j))pw(j,:)=x(j,:);pworst(j)= func3(x(j,:));end%%%%%%%%%%更新全局最优位置和最优值%%%%%%%%%%%%if(pbest(j) < gbest)g = p(j,:);gbest = pbest(j);%%%%%%%%%%更新最差位置和最差值%%%%%%%%%%%%elseif (pworst(j) > gworst)gw=p(j,:);gworst=pworst(j);end%%%%%%%%%%%计算动态惯性权重值%%%%%%%%%%%%%%%w = Wmax-(Wmax-Wmin)*i/T;%线性递减公式%%%%%%%%%%%%更新位置和速度值%%%%%%%%%%%%%%%v(j,:) = w*v(j,:)+c1*rand*(p(j,:)-x(j,:))...+c2*rand*(g-x(j,:))+c3*rand*(pw(j,:)-x(j,:))+c4*rand*(gw-x(j,:));x(j,:) = x(j,:)+v(j,:);%%%%%%%%%%%%%%边界条件处理%%%%%%%%%%%%%%%for ii = 1:Dif (v(j,ii) > Vmax) | (v(j,ii) < Vmin)v(j,ii) = rand * (Vmax-Vmin)+Vmin;endif (x(j,ii) > Xmax) | (x(j,ii) < Xmin)x(j,ii) = rand * (Xmax-Xmin)+Xmin;endendend%%%%%%%%%%%%%%记录历代全局最优值%%%%%%%%%%%%%%gb(i) = gbest;
end

结果显示

g  %最优个体
gb(end)  %最优值
figure
plot(gb)
xlabel('Iterations');
ylabel('Fitness value');
title('Fitness evolution curve')

参考文章

基本粒子群算法小结及算法实例(附Matlab代码)

这篇关于阿白数模笔记之粒子群法(Particle Swarm Optimization,PSO)负反馈(Degenerative Feedback)修正及MATLAB代码详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/260946

相关文章

CSS will-change 属性示例详解

《CSSwill-change属性示例详解》will-change是一个CSS属性,用于告诉浏览器某个元素在未来可能会发生哪些变化,本文给大家介绍CSSwill-change属性详解,感... will-change 是一个 css 属性,用于告诉浏览器某个元素在未来可能会发生哪些变化。这可以帮助浏览器优化

Python基础文件操作方法超详细讲解(详解版)

《Python基础文件操作方法超详细讲解(详解版)》文件就是操作系统为用户或应用程序提供的一个读写硬盘的虚拟单位,文件的核心操作就是读和写,:本文主要介绍Python基础文件操作方法超详细讲解的相... 目录一、文件操作1. 文件打开与关闭1.1 打开文件1.2 关闭文件2. 访问模式及说明二、文件读写1.

详解C++中类的大小决定因数

《详解C++中类的大小决定因数》类的大小受多个因素影响,主要包括成员变量、对齐方式、继承关系、虚函数表等,下面就来介绍一下,具有一定的参考价值,感兴趣的可以了解一下... 目录1. 非静态数据成员示例:2. 数据对齐(Padding)示例:3. 虚函数(vtable 指针)示例:4. 继承普通继承虚继承5.

前端高级CSS用法示例详解

《前端高级CSS用法示例详解》在前端开发中,CSS(层叠样式表)不仅是用来控制网页的外观和布局,更是实现复杂交互和动态效果的关键技术之一,随着前端技术的不断发展,CSS的用法也日益丰富和高级,本文将深... 前端高级css用法在前端开发中,CSS(层叠样式表)不仅是用来控制网页的外观和布局,更是实现复杂交

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

详解C#如何提取PDF文档中的图片

《详解C#如何提取PDF文档中的图片》提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使用,下面我们就来看看如何使用C#通过代码从PDF文档中提取图片吧... 当 PDF 文件中包含有价值的图片,如艺术画作、设计素材、报告图表等,提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(