阿白数模笔记之粒子群法(Particle Swarm Optimization,PSO)负反馈(Degenerative Feedback)修正及MATLAB代码详解

本文主要是介绍阿白数模笔记之粒子群法(Particle Swarm Optimization,PSO)负反馈(Degenerative Feedback)修正及MATLAB代码详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

Preface

基本粒子群法(Basic particle swarm optimization)

负反馈(Degenerative Feedback)修正

MATLAB代码详解

多峰函数

 参数初始化

迭代过程

结果显示

参考文章

Preface

        粒子群优化Particle Swarm OptimizationPSO),又称微粒群算法,是由J. Kennedy和R. C. Eberhart等于1995年开发的一种演化计算技术,来源于对一个简化社会模型的模拟。其中“群(swarm)”来源于微粒群匹配M. M. Millonas在开发应用于人工生命(artificial life)的模型时所提出的群体智能的5个基本原则。“粒子(particle)”是一个折衷的选择,因为既需要将群体中的成员描述为没有质量、没有体积的,同时也需要描述它的速度和加速状态。

基本粒子群法(Basic particle swarm optimization)

        在D维空间,N个粒子组成一个群落X=(X_1,X_2,...X_N),每个粒子位置坐标是D维向量,

X_i=(x_{i1},x_{i2},...x_{iD}),i=1,2,...N,在每个维度上的速度也是D维向量V_i=(v_{i1},v_{i2},...v_{iD}),i=1,2,...D,在迭代过程中,对每一个粒子X_i,保留它迄今为止搜索到的最优位置为个体极值P_i{best}=(p_{i1},p_{i2},...p_{iD}),i=1,2,...N,整个粒子群搜索到的最优路径为G_{best}=(g_1,g_2,...g_D),每进行一次迭代,粒子的位置和速度都会更新,更新公式为

x_{ij}(t+1)=x_{ij}(t)+v_{ij}(t),i=1,2,...N,j=1,2,...D,i表示第几个粒子,j表示维度

v_{ij}(t+1)=wv_{ij}(t)+c_1*rand()*(p_{ij}-x_{ij}(t))+c_1*rand()*(gj-x_{ij}(t)),i=1,2,...N,j=1,2,...D

其中w是惯性系数,即前一次迭代速度对后一次的影响系数,p_{ij}-x_{ij}(t)表示个体目前最优极值对搜索的影响,反映了粒子的认知能力,c_1>0gj-x_{ij}(t)表示群体最优极值对个体的影响,反映了粒子的社会性行为,c_2>0,均为正反馈调节。

负反馈(Degenerative Feedback)修正

        在速度更新公式的基础上,引入负反馈调节因子c_3,c_4进行修正。在迭代过程中,对每一个粒子迄今为止搜索到的最差路径为个体极差值,P_i{worst}=(p'_{i1},p'_{i2},...p'_{iD}),i=1,2,...N,整个粒子群搜索到的最优路径为G_{worst}=(g'_1,g'_2,...g'_D),修正后的速度更新公式为v_{ij}(t+1)=wv_{ij}(t)+c_1*rand()*(p_{ij}-x_{ij}(t))+c_1*rand()*(gj-x_{ij}(t))+c_3*rand()*(p'_{ij}-x_{ij}(t))+c_4*rand()*(g'_j-x_{ij}(t)),i=1,2,...N,j=1,2,...D,其中

c_3<0,c_4<0,表示负反馈调节,增强了个体的认知能力的社会能力。

MATLAB代码详解

多峰函数

        这是待求极小值的多峰函数

function v=func3(x)
v=((1*cos((1+1).*x(1)+1))+(2*cos((2+1).*x(1)+2))+(3*cos((3+1).*x(1)+3))+...(4*cos((4+1).*x(1)+4))+(5*cos((5+1).*x(1)+5))).*((1*cos((1+1).*x(2)+1))+...(2*cos((2+1).*x(2)+2))+(3*cos((3+1).*x(2)+3))+(4*cos((4+1).*x(2)+4))+(5*cos((5+1).*x(2)+5)));
end
x=linspace(-10,10,2000);
y=x;
z=meshgrid(x,y);
for i=1:size(x,2)for j=1:size(x,2)z(i,j)=func3([x(i),y(j)]);end
end
mesh(x,y,z);

 参数初始化

clear all; %清除所有变量
close all; %清图
clc; %清屏
N = 100; %群体粒子个数
D = 2; %粒子维数
T = 200; %最大迭代次数
c1 = 1.5; %正反馈调节因子1
c2 = 1.5; %正反馈调节因子2
c3=-0.5;%负反馈调节因子1
c4=-0.5;%负反馈调节因子2
Wmax = 0.8; %惯性权重最大值
Wmin = 0.4; %惯性权重最小值
Xmax = 10; %位置最大值
Xmin = -10; %位置最小值
Vmax = 1; %速度最大值,当更新后速度v>Vmax,取v=Vmax
Vmin = -1; %速度最小值,当更新后速度v<Vmin,取v=Vmin
%%%%%%%%%%%%初始化种群个体(限定位置和速度)%%%%%%%%%%%%
x = rand(N,D) * (Xmax-Xmin)+Xmin;
v = rand(N,D) * (Vmax-Vmin)+Vmin;%%%%%%%%%%%%%初始化个体最优位置最优值以及最差位置最差值%%%%%%%%%%%%%
p = x;
pw=x;
pbest = ones(N,1);
for i = 1:Npbest(i) = func3(x(i,:));
end
pworst=pbest;%初始时刻个体最优值也是最差值%%%%%%%%%%%%%初始化全局最优位置和最优值%%%%%%%%%%%%
g = ones(1,D);
gw=ones(1,D);
gbest = inf;
gworst=-inf;
for i = 1:Nif(pbest(i) < gbest)g = p(i,:);gbest = pbest(i);elseif (pbest(i)>gworst)gw=p(i,:);gworst=pbest(i);end
end
gb = ones(1,T);%记录每次迭代最优值

迭代过程

%%%%%%%%%按照公式依次迭代直到满足精度或者迭代次数%%%%%%%%
for i = 1:Tfor j = 1:N%%%%%%%%%更新个体最优位置和最优值%%%%%%%%%%%%%if (func3(x(j,:)) < pbest(j))p(j,:) = x(j,:);pbest(j) = func3(x(j,:));%%%%%%%%%更新个体最差位置和最差值%%%%%%%%%%%%%elseif (func3(x(j,:)) >pworst(j))pw(j,:)=x(j,:);pworst(j)= func3(x(j,:));end%%%%%%%%%%更新全局最优位置和最优值%%%%%%%%%%%%if(pbest(j) < gbest)g = p(j,:);gbest = pbest(j);%%%%%%%%%%更新最差位置和最差值%%%%%%%%%%%%elseif (pworst(j) > gworst)gw=p(j,:);gworst=pworst(j);end%%%%%%%%%%%计算动态惯性权重值%%%%%%%%%%%%%%%w = Wmax-(Wmax-Wmin)*i/T;%线性递减公式%%%%%%%%%%%%更新位置和速度值%%%%%%%%%%%%%%%v(j,:) = w*v(j,:)+c1*rand*(p(j,:)-x(j,:))...+c2*rand*(g-x(j,:))+c3*rand*(pw(j,:)-x(j,:))+c4*rand*(gw-x(j,:));x(j,:) = x(j,:)+v(j,:);%%%%%%%%%%%%%%边界条件处理%%%%%%%%%%%%%%%for ii = 1:Dif (v(j,ii) > Vmax) | (v(j,ii) < Vmin)v(j,ii) = rand * (Vmax-Vmin)+Vmin;endif (x(j,ii) > Xmax) | (x(j,ii) < Xmin)x(j,ii) = rand * (Xmax-Xmin)+Xmin;endendend%%%%%%%%%%%%%%记录历代全局最优值%%%%%%%%%%%%%%gb(i) = gbest;
end

结果显示

g  %最优个体
gb(end)  %最优值
figure
plot(gb)
xlabel('Iterations');
ylabel('Fitness value');
title('Fitness evolution curve')

参考文章

基本粒子群算法小结及算法实例(附Matlab代码)

这篇关于阿白数模笔记之粒子群法(Particle Swarm Optimization,PSO)负反馈(Degenerative Feedback)修正及MATLAB代码详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/260946

相关文章

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

mysql表操作与查询功能详解

《mysql表操作与查询功能详解》本文系统讲解MySQL表操作与查询,涵盖创建、修改、复制表语法,基本查询结构及WHERE、GROUPBY等子句,本文结合实例代码给大家介绍的非常详细,感兴趣的朋友跟随... 目录01.表的操作1.1表操作概览1.2创建表1.3修改表1.4复制表02.基本查询操作2.1 SE

MySQL中的锁机制详解之全局锁,表级锁,行级锁

《MySQL中的锁机制详解之全局锁,表级锁,行级锁》MySQL锁机制通过全局、表级、行级锁控制并发,保障数据一致性与隔离性,全局锁适用于全库备份,表级锁适合读多写少场景,行级锁(InnoDB)实现高并... 目录一、锁机制基础:从并发问题到锁分类1.1 并发访问的三大问题1.2 锁的核心作用1.3 锁粒度分

MySQL数据库中ENUM的用法是什么详解

《MySQL数据库中ENUM的用法是什么详解》ENUM是一个字符串对象,用于指定一组预定义的值,并可在创建表时使用,下面:本文主要介绍MySQL数据库中ENUM的用法是什么的相关资料,文中通过代码... 目录mysql 中 ENUM 的用法一、ENUM 的定义与语法二、ENUM 的特点三、ENUM 的用法1