【LeetCode:2316. 统计无向图中无法互相到达点对数 | BFS + 乘法原理】

本文主要是介绍【LeetCode:2316. 统计无向图中无法互相到达点对数 | BFS + 乘法原理】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

🚀 算法题 🚀

🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀
🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨
🌲 作者简介:硕风和炜,CSDN-Java领域新星创作者🏆,保研|国家奖学金|高中学习JAVA|大学完善JAVA开发技术栈|面试刷题|面经八股文|经验分享|好用的网站工具分享💎💎💎
🌲 恭喜你发现一枚宝藏博主,赶快收入囊中吧🌻
🌲 人生如棋,我愿为卒,行动虽慢,可谁曾见我后退一步?🎯🎯

🚀 算法题 🚀

在这里插入图片描述

在这里插入图片描述

🍔 目录

    • 🚩 题目链接
    • ⛲ 题目描述
    • 🌟 求解思路&实现代码&运行结果
      • ⚡ BFS+ 乘法原理
        • 🥦 求解思路
        • 🥦 实现代码
        • 🥦 运行结果
    • 💬 共勉

🚩 题目链接

  • 2316. 统计无向图中无法互相到达点对数

⛲ 题目描述

给你一个整数 n ,表示一张 无向图 中有 n 个节点,编号为 0 到 n - 1 。同时给你一个二维整数数组 edges ,其中 edges[i] = [ai, bi] 表示节点 ai 和 bi 之间有一条 无向 边。

请你返回 无法互相到达 的不同 点对数目 。

在这里插入图片描述

在这里插入图片描述

提示:

1 <= n <= 105
0 <= edges.length <= 2 * 105
edges[i].length == 2
0 <= ai, bi < n
ai != bi
不会有重复边。

🌟 求解思路&实现代码&运行结果


⚡ BFS+ 乘法原理

🥦 求解思路
  1. 题目让我们求解是从找到所有无法互相到达的不同点对数目,我们可以先找到每一个连通块的节点个数cnt,因为一共是n个节点,所以,剩下的不能到达的节点个数就是(n-cnt),所以,当前连通块中所有节点不能到达其它节点的个数是cnt * (n-cnt)-乘法原理。因为这只是一个连通块,其它情况类似,遍历下去,找到所有情况。
  2. 具体实现的时候,我们需要先建无向图,然后通过bfs求解,同时需要维护vis访问的节点的数组,避免重复访问。
  3. 最后,因为每个节点双向计算了两次。我们需要将结果/2来得到最终的结果。
  4. 具体求解的过程步骤请看下面代码。
🥦 实现代码
class Solution {public long countPairs(int n, int[][] edges) {long ans=0;ArrayList<Integer>[] list=new ArrayList[n]; Arrays.setAll(list,e->new ArrayList<>());for(int[] edge:edges){int from=edge[0],to=edge[1];list[from].add(to);list[to].add(from);}Queue<Integer> queue=new LinkedList<>();boolean[] vis=new boolean[n];Arrays.fill(vis,false);for(int i=0;i<n;i++){if(!vis[i]){queue.add(i);vis[i]=true;int cnt=0;while(!queue.isEmpty()){int size=queue.size();for(int j=0;j<size;j++){int cur=queue.poll();cnt++;for(int node:list[cur]){if(!vis[node]){queue.add(node);vis[node]=true;}}}}ans+=(long)(n-cnt)*cnt;}}return ans/2;}
}
🥦 运行结果

在这里插入图片描述


💬 共勉

最后,我想和大家分享一句一直激励我的座右铭,希望可以与大家共勉!

在这里插入图片描述

在这里插入图片描述

这篇关于【LeetCode:2316. 统计无向图中无法互相到达点对数 | BFS + 乘法原理】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/257022

相关文章

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

电脑win32spl.dll文件丢失咋办? win32spl.dll丢失无法连接打印机修复技巧

《电脑win32spl.dll文件丢失咋办?win32spl.dll丢失无法连接打印机修复技巧》电脑突然提示win32spl.dll文件丢失,打印机死活连不上,今天就来给大家详细讲解一下这个问题的解... 不知道大家在使用电脑的时候是否遇到过关于win32spl.dll文件丢失的问题,win32spl.dl

pip无法安装osgeo失败的问题解决

《pip无法安装osgeo失败的问题解决》本文主要介绍了pip无法安装osgeo失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 进入官方提供的扩展包下载网站寻找版本适配的whl文件注意:要选择cp(python版本)和你py

SpringBoot项目启动报错"找不到或无法加载主类"的解决方法

《SpringBoot项目启动报错找不到或无法加载主类的解决方法》在使用IntelliJIDEA开发基于SpringBoot框架的Java程序时,可能会出现找不到或无法加载主类com.example.... 目录一、问题描述二、排查过程三、解决方案一、问题描述在使用 IntelliJ IDEA 开发基于

一文详解SQL Server如何跟踪自动统计信息更新

《一文详解SQLServer如何跟踪自动统计信息更新》SQLServer数据库中,我们都清楚统计信息对于优化器来说非常重要,所以本文就来和大家简单聊一聊SQLServer如何跟踪自动统计信息更新吧... SQL Server数据库中,我们都清楚统计信息对于优化器来说非常重要。一般情况下,我们会开启"自动更新

Java实现XML与JSON的互相转换详解

《Java实现XML与JSON的互相转换详解》这篇文章主要为大家详细介绍了如何使用Java实现XML与JSON的互相转换,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. XML转jsON1.1 代码目的1.2 代码实现2. JSON转XML3. JSON转XML并输出成指定的

JAVA封装多线程实现的方式及原理

《JAVA封装多线程实现的方式及原理》:本文主要介绍Java中封装多线程的原理和常见方式,通过封装可以简化多线程的使用,提高安全性,并增强代码的可维护性和可扩展性,需要的朋友可以参考下... 目录前言一、封装的目标二、常见的封装方式及原理总结前言在 Java 中,封装多线程的原理主要围绕着将多线程相关的操