将时间序列转成图像——希尔伯特-黄变换方法 Matlab实现

2023-10-21 20:10

本文主要是介绍将时间序列转成图像——希尔伯特-黄变换方法 Matlab实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1 方法

2 Matlab代码实现

3 结果


【若觉文章质量良好且有用,请别忘了点赞收藏加关注,这将是我继续分享的动力,万分感谢!】

其他:

1.时间序列转二维图像方法及其应用研究综述_vm-1215的博客-CSDN博客

2.将时间序列转成图像——短时傅里叶方法 Matlab实现_vm-1215的博客-CSDN博客

3.将时间序列转成图像——小波变换方法 Matlab实现_vm-1215的博客-CSDN博客

1 方法

前面提到的信号处理方法基本都受到傅里叶理论的影响,不能很好的处理不规则的信号,因此,1998年Norden E. Huang 等人[9]提出经验模态分解方法,并引入Hilbert谱的概念和Hilbert谱分析方法,称为希尔伯特-黄变换(Hilbert-Huang Transform, HHT)。

希尔伯特-黄变换主要包括两个阶段,分别是经验模态分解(EMD)和Hilbert变换(HT)。经验模态分解流程为:

  1. 找到信号的极大值和极小值找到信号f(t)的极大值和极小值,通过三次样条拟合得到上、下包络线,计算其均值得m_1 (t);
  2. 得到第一个分量h_1 (t)=f(t)-m_1 (t), 检查其是否满足模态分量的条件:
    • h_1 (t)得极大值点与过0点数量相差不超过1个;
    • h_1 (t)的上、下包络线均值恒为0。如不满足,重复操作1、2直至得到满足模态函数(IMF)条件的模态分量c_1 (t)
  3. 原始信号减去第一个模态分量,得到信号r_1 (t)=f(t)-c_1 (t),将r_1 (t)当成新的“原始信号”,重复以上操作,直至筛选条件SD=\frac{\sum_{t=0}^{T}\left|h_{k-1}(t)-h_{k}(t)\right|^{2}}{\sum_{t=0}^{T}h_{k-1}^{2}}小于预设值时,经验模态分解结束。这样原始信号便分成若干经验模态分量和一个残余信号:f(t)=\sum_{i=0}^{n} c_{i}+r_{n}(t)

相较于短时傅里叶变换和小波变换,HHT得到时频图分辨率比较低,具有较好的自适应性。

2 Matlab代码实现

clc
clear
close all
% load signal.mat
%% 输入数据
% 实验数据
% ts = 0:0.001:0.6;
% fs = 1000;
% x = cos(2*pi*20*ts) + 2*cos(2*pi*100*ts);
% N = length(x);% 时间检测数据
speed = xlsread('3_1_link6_28_5_30min.csv');
% speed = xlsread('3_1_link1_1_5_30min.csv');x = speed';
x = (x - min(x)) / (max(x) - min(x));
M = length(x);
fs = 500;% x = cos(2*pi*20*ts) + 2*cos(2*pi*100*ts);
% fs = 500000000;
% load signal;
% x = signal;
N = length(x);%% EMD和HT
[imf,residual,info]=emd(x,'Interpolation','pchip','Display',0);
figure()
hht(imf,fs);
% 横轴表示时间、纵轴表示频率,颜色表示能量
[hs, f, t, imfinsf, imfinse] = hht(imf,fs);
% hs——信号的希尔伯特谱(Hilbert Spectrum )
% f——信号的频率向量(Frequency vector of signal)
% t——信号的时间向量(Time vector of signal)
% imfinsf——每个imf的瞬时频率(instantaneous frequency of each imf)
% imfinse——每个imf的瞬时能量(instantaneous energy of each imf)
im = figure(1);

3 结果

【若觉文章质量良好且有用,请别忘了点赞收藏加关注,这将是我继续分享的动力,万分感谢!】

这篇关于将时间序列转成图像——希尔伯特-黄变换方法 Matlab实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/256695

相关文章

服务器集群同步时间手记

1.时间服务器配置(必须root用户) (1)检查ntp是否安装 [root@node1 桌面]# rpm -qa|grep ntpntp-4.2.6p5-10.el6.centos.x86_64fontpackages-filesystem-1.41-1.1.el6.noarchntpdate-4.2.6p5-10.el6.centos.x86_64 (2)修改ntp配置文件 [r

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

webm怎么转换成mp4?这几种方法超多人在用!

webm怎么转换成mp4?WebM作为一种新兴的视频编码格式,近年来逐渐进入大众视野,其背后承载着诸多优势,但同时也伴随着不容忽视的局限性,首要挑战在于其兼容性边界,尽管WebM已广泛适应于众多网站与软件平台,但在特定应用环境或老旧设备上,其兼容难题依旧凸显,为用户体验带来不便,再者,WebM格式的非普适性也体现在编辑流程上,由于它并非行业内的通用标准,编辑过程中可能会遭遇格式不兼容的障碍,导致操