将时间序列转成图像——希尔伯特-黄变换方法 Matlab实现

2023-10-21 20:10

本文主要是介绍将时间序列转成图像——希尔伯特-黄变换方法 Matlab实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1 方法

2 Matlab代码实现

3 结果


【若觉文章质量良好且有用,请别忘了点赞收藏加关注,这将是我继续分享的动力,万分感谢!】

其他:

1.时间序列转二维图像方法及其应用研究综述_vm-1215的博客-CSDN博客

2.将时间序列转成图像——短时傅里叶方法 Matlab实现_vm-1215的博客-CSDN博客

3.将时间序列转成图像——小波变换方法 Matlab实现_vm-1215的博客-CSDN博客

1 方法

前面提到的信号处理方法基本都受到傅里叶理论的影响,不能很好的处理不规则的信号,因此,1998年Norden E. Huang 等人[9]提出经验模态分解方法,并引入Hilbert谱的概念和Hilbert谱分析方法,称为希尔伯特-黄变换(Hilbert-Huang Transform, HHT)。

希尔伯特-黄变换主要包括两个阶段,分别是经验模态分解(EMD)和Hilbert变换(HT)。经验模态分解流程为:

  1. 找到信号的极大值和极小值找到信号f(t)的极大值和极小值,通过三次样条拟合得到上、下包络线,计算其均值得m_1 (t);
  2. 得到第一个分量h_1 (t)=f(t)-m_1 (t), 检查其是否满足模态分量的条件:
    • h_1 (t)得极大值点与过0点数量相差不超过1个;
    • h_1 (t)的上、下包络线均值恒为0。如不满足,重复操作1、2直至得到满足模态函数(IMF)条件的模态分量c_1 (t)
  3. 原始信号减去第一个模态分量,得到信号r_1 (t)=f(t)-c_1 (t),将r_1 (t)当成新的“原始信号”,重复以上操作,直至筛选条件SD=\frac{\sum_{t=0}^{T}\left|h_{k-1}(t)-h_{k}(t)\right|^{2}}{\sum_{t=0}^{T}h_{k-1}^{2}}小于预设值时,经验模态分解结束。这样原始信号便分成若干经验模态分量和一个残余信号:f(t)=\sum_{i=0}^{n} c_{i}+r_{n}(t)

相较于短时傅里叶变换和小波变换,HHT得到时频图分辨率比较低,具有较好的自适应性。

2 Matlab代码实现

clc
clear
close all
% load signal.mat
%% 输入数据
% 实验数据
% ts = 0:0.001:0.6;
% fs = 1000;
% x = cos(2*pi*20*ts) + 2*cos(2*pi*100*ts);
% N = length(x);% 时间检测数据
speed = xlsread('3_1_link6_28_5_30min.csv');
% speed = xlsread('3_1_link1_1_5_30min.csv');x = speed';
x = (x - min(x)) / (max(x) - min(x));
M = length(x);
fs = 500;% x = cos(2*pi*20*ts) + 2*cos(2*pi*100*ts);
% fs = 500000000;
% load signal;
% x = signal;
N = length(x);%% EMD和HT
[imf,residual,info]=emd(x,'Interpolation','pchip','Display',0);
figure()
hht(imf,fs);
% 横轴表示时间、纵轴表示频率,颜色表示能量
[hs, f, t, imfinsf, imfinse] = hht(imf,fs);
% hs——信号的希尔伯特谱(Hilbert Spectrum )
% f——信号的频率向量(Frequency vector of signal)
% t——信号的时间向量(Time vector of signal)
% imfinsf——每个imf的瞬时频率(instantaneous frequency of each imf)
% imfinse——每个imf的瞬时能量(instantaneous energy of each imf)
im = figure(1);

3 结果

【若觉文章质量良好且有用,请别忘了点赞收藏加关注,这将是我继续分享的动力,万分感谢!】

这篇关于将时间序列转成图像——希尔伯特-黄变换方法 Matlab实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/256695

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima