将时间序列转成图像——希尔伯特-黄变换方法 Matlab实现

2023-10-21 20:10

本文主要是介绍将时间序列转成图像——希尔伯特-黄变换方法 Matlab实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1 方法

2 Matlab代码实现

3 结果


【若觉文章质量良好且有用,请别忘了点赞收藏加关注,这将是我继续分享的动力,万分感谢!】

其他:

1.时间序列转二维图像方法及其应用研究综述_vm-1215的博客-CSDN博客

2.将时间序列转成图像——短时傅里叶方法 Matlab实现_vm-1215的博客-CSDN博客

3.将时间序列转成图像——小波变换方法 Matlab实现_vm-1215的博客-CSDN博客

1 方法

前面提到的信号处理方法基本都受到傅里叶理论的影响,不能很好的处理不规则的信号,因此,1998年Norden E. Huang 等人[9]提出经验模态分解方法,并引入Hilbert谱的概念和Hilbert谱分析方法,称为希尔伯特-黄变换(Hilbert-Huang Transform, HHT)。

希尔伯特-黄变换主要包括两个阶段,分别是经验模态分解(EMD)和Hilbert变换(HT)。经验模态分解流程为:

  1. 找到信号的极大值和极小值找到信号f(t)的极大值和极小值,通过三次样条拟合得到上、下包络线,计算其均值得m_1 (t);
  2. 得到第一个分量h_1 (t)=f(t)-m_1 (t), 检查其是否满足模态分量的条件:
    • h_1 (t)得极大值点与过0点数量相差不超过1个;
    • h_1 (t)的上、下包络线均值恒为0。如不满足,重复操作1、2直至得到满足模态函数(IMF)条件的模态分量c_1 (t)
  3. 原始信号减去第一个模态分量,得到信号r_1 (t)=f(t)-c_1 (t),将r_1 (t)当成新的“原始信号”,重复以上操作,直至筛选条件SD=\frac{\sum_{t=0}^{T}\left|h_{k-1}(t)-h_{k}(t)\right|^{2}}{\sum_{t=0}^{T}h_{k-1}^{2}}小于预设值时,经验模态分解结束。这样原始信号便分成若干经验模态分量和一个残余信号:f(t)=\sum_{i=0}^{n} c_{i}+r_{n}(t)

相较于短时傅里叶变换和小波变换,HHT得到时频图分辨率比较低,具有较好的自适应性。

2 Matlab代码实现

clc
clear
close all
% load signal.mat
%% 输入数据
% 实验数据
% ts = 0:0.001:0.6;
% fs = 1000;
% x = cos(2*pi*20*ts) + 2*cos(2*pi*100*ts);
% N = length(x);% 时间检测数据
speed = xlsread('3_1_link6_28_5_30min.csv');
% speed = xlsread('3_1_link1_1_5_30min.csv');x = speed';
x = (x - min(x)) / (max(x) - min(x));
M = length(x);
fs = 500;% x = cos(2*pi*20*ts) + 2*cos(2*pi*100*ts);
% fs = 500000000;
% load signal;
% x = signal;
N = length(x);%% EMD和HT
[imf,residual,info]=emd(x,'Interpolation','pchip','Display',0);
figure()
hht(imf,fs);
% 横轴表示时间、纵轴表示频率,颜色表示能量
[hs, f, t, imfinsf, imfinse] = hht(imf,fs);
% hs——信号的希尔伯特谱(Hilbert Spectrum )
% f——信号的频率向量(Frequency vector of signal)
% t——信号的时间向量(Time vector of signal)
% imfinsf——每个imf的瞬时频率(instantaneous frequency of each imf)
% imfinse——每个imf的瞬时能量(instantaneous energy of each imf)
im = figure(1);

3 结果

【若觉文章质量良好且有用,请别忘了点赞收藏加关注,这将是我继续分享的动力,万分感谢!】

这篇关于将时间序列转成图像——希尔伯特-黄变换方法 Matlab实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/256695

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

Nginx设置连接超时并进行测试的方法步骤

《Nginx设置连接超时并进行测试的方法步骤》在高并发场景下,如果客户端与服务器的连接长时间未响应,会占用大量的系统资源,影响其他正常请求的处理效率,为了解决这个问题,可以通过设置Nginx的连接... 目录设置连接超时目的操作步骤测试连接超时测试方法:总结:设置连接超时目的设置客户端与服务器之间的连接

Java判断多个时间段是否重合的方法小结

《Java判断多个时间段是否重合的方法小结》这篇文章主要为大家详细介绍了Java中判断多个时间段是否重合的方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录判断多个时间段是否有间隔判断时间段集合是否与某时间段重合判断多个时间段是否有间隔实体类内容public class D

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

IDEA编译报错“java: 常量字符串过长”的原因及解决方法

《IDEA编译报错“java:常量字符串过长”的原因及解决方法》今天在开发过程中,由于尝试将一个文件的Base64字符串设置为常量,结果导致IDEA编译的时候出现了如下报错java:常量字符串过长,... 目录一、问题描述二、问题原因2.1 理论角度2.2 源码角度三、解决方案解决方案①:StringBui

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程