linux(manjaro) tensorflow2.1 conda cuda10 双显卡笔记本深度学习环境搭建

本文主要是介绍linux(manjaro) tensorflow2.1 conda cuda10 双显卡笔记本深度学习环境搭建,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

linux(manjaro) tensorflow2.1 conda cuda10 双显卡笔记本深度学习环境搭建

下学期要学tensorflow,看着我可怜的1050ti,流下了贫穷的泪水,但无奈要做实验啊,学还是得学的,安装过程记录一下,仅供参考

关于manjaro

之前写过一篇怎么安装manjaro的文章来着,虽然manjaro在国内不是大众发行版,但在尝试过诸多linux后,我最终留在了manjaro.

双显卡驱动

我的驱动,直接上图
驱动

Anaconda

一开始我尝试用pacman直接安装tf cuda cudnn等,很简单

tf CPU
sudo pacman -S python-tensorflow-opt
tf GPU
sudo pacman -S python-tensorflow-opt-cuda cuda cudnn

但是GUP版装好之后运行测试会报
RuntimeError: cuda runtime error (35) : CUDA driver version is insufficient for CUDA runtime version at …
原因:CUDA驱动版本不满足CUDA运行版本。
具体显卡驱动与CUDA版本对应见下
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
在这里插入图片描述
我的是440xx 而软件库中提供的是cuda11

不想换驱动,那就给 cuda 和 tf 降级

conda安装

sudo pacman -S anacondaconda -h

如果有conda:命令未找到的报错,就需要修改一下环境变量

export PATH=$PATH:/opt/anaconda/bin

CUDA CUDNN

conda install cudatoolkit=10.1 cudnn=7.6 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/linux-64/

tensorflow2.1

conda create -n tf2-gpu tensorflow-gpu==2.1 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/linux-64/

装好后,检查环境

conda env list# conda environments:
#
tf2-gpu                  $home/.conda/envs/tf2-gpu
base                  *  /opt/anaconda
进入环境并测试

与win不同,linux进入conda环境要使用source activate,退出则是conda deactivate
要进入刚才搭建的tf2的环境只需要输入source activate tf2-gpu

source activate tf2-gpu(tf2-gpu) git clone https://hub.fastgit.org/guangfuhao/Deeplearning(tf2-gpu) cd Deeplearning(tf2-gpu) cp mnist.npz <你的测试目录>(tf2-gpu) pip install matplotlib numpy

编辑测试程序,很短就用vim test.py,注意将这个test.py与之前下载的mnist.npz放到同一目录下

测试程序
# 1.Import the neccessary libraries needed
import numpy as np
import tensorflow as tf
import matplotlib
from matplotlib import pyplot as plt######################################################################### 2.Set default parameters for plots
matplotlib.rcParams['font.size'] = 20
matplotlib.rcParams['figure.titlesize'] = 20
matplotlib.rcParams['figure.figsize'] = [9, 7]
matplotlib.rcParams['font.family'] = ['STKaiTi']
matplotlib.rcParams['axes.unicode_minus'] = False########################################################################
# 3.Initialize Parameters# Initialize learning rate
lr = 1e-3
# Initialize loss array
losses = []
# Initialize the weights layers and the bias layers
w1 = tf.Variable(tf.random.truncated_normal([784, 256], stddev=0.1))
b1 = tf.Variable(tf.zeros([256]))
w2 = tf.Variable(tf.random.truncated_normal([256, 128], stddev=0.1))
b2 = tf.Variable(tf.zeros([128]))
w3 = tf.Variable(tf.random.truncated_normal([128, 10], stddev=0.1))
b3 = tf.Variable(tf.zeros([10]))######################################################################### 4.Import the minist dataset by numpy offlinedef load_mnist():# define the directory where mnist.npz is(Please watch the '\'!)path = r'./mnist.npz'f = np.load(path)x_train, y_train = f['x_train'], f['y_train']x_test, y_test = f['x_test'], f['y_test']f.close()return (x_train, y_train), (x_test, y_test)(train_image, train_label), _ = load_mnist()
x = tf.convert_to_tensor(train_image, dtype=tf.float32) / 255.
y = tf.convert_to_tensor(train_label, dtype=tf.int32)
# Reshape x from [60k, 28, 28] to [60k, 28*28]
x = tf.reshape(x, [-1, 28*28])######################################################################### 5.Combine x and y as a tuple and batch them
train_db = tf.data.Dataset.from_tensor_slices((x, y)).batch(128)
'''
#Encapsulate train_db as an iterator object
train_iter = iter(train_db)
sample = next(train_iter)
'''######################################################################### 6.Iterate database for 20 times
for epoch in range(20):# For every batch:x:[128, 28*28],y: [128]for step, (x, y) in enumerate(train_db):with tf.GradientTape() as tape:  # tf.Variable# x: [b, 28*28]# h1 = x@w1 + b1# [b, 784]@[784, 256] + [256] => [b, 256] + [256] => [b, 256] + [b, 256]h1 = x@w1 + tf.broadcast_to(b1, [x.shape[0], 256])h1 = tf.nn.relu(h1)# [b, 256] => [b, 128]h2 = h1@w2 + b2h2 = tf.nn.relu(h2)# [b, 128] => [b, 10]out = h2@w3 + b3# y: [b] => [b, 10]y_onehot = tf.one_hot(y, depth=10)# compute loss# mse = mean(sum(y-out)^2)# [b, 10]loss = tf.square(y_onehot - out)# mean: scalarloss = tf.reduce_mean(loss)# compute gradientsgrads = tape.gradient(loss, [w1, b1, w2, b2, w3, b3])# Update the weights and the biasw1.assign_sub(lr * grads[0])b1.assign_sub(lr * grads[1])w2.assign_sub(lr * grads[2])b2.assign_sub(lr * grads[3])w3.assign_sub(lr * grads[4])b3.assign_sub(lr * grads[5])if step % 100 == 0:print(epoch, step, 'loss:', float(loss))losses.append(float(loss))######################################################################### 7.Show the change of losses via matplotlib
plt.figure()
plt.plot(losses, color='C0', marker='s', label='训练')
plt.xlabel('Epoch')
plt.legend()
plt.ylabel('MSE')
# Save figure as '.svg' file
# plt.savefig('forward.svg')
plt.show()
python3 test.py

不出意外会有类似的输出
在这里插入图片描述
最后画出一张图
在这里插入图片描述

ps: 如何优雅的监控GPU
watch -n 1 nvidia-smi

在这里插入图片描述
好了,环境搭建大功告成
在我的机器上这个过程是成立的,如果有什么疑问欢迎在评论区留言

这篇关于linux(manjaro) tensorflow2.1 conda cuda10 双显卡笔记本深度学习环境搭建的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/252970

相关文章

gradle安装和环境配置全过程

《gradle安装和环境配置全过程》本文介绍了如何安装和配置Gradle环境,包括下载Gradle、配置环境变量、测试Gradle以及在IntelliJIDEA中配置Gradle... 目录gradle安装和环境配置1 下载GRADLE2 环境变量配置3 测试gradle4 设置gradle初始化文件5 i

Linux中Curl参数详解实践应用

《Linux中Curl参数详解实践应用》在现代网络开发和运维工作中,curl命令是一个不可或缺的工具,它是一个利用URL语法在命令行下工作的文件传输工具,支持多种协议,如HTTP、HTTPS、FTP等... 目录引言一、基础请求参数1. -X 或 --request2. -d 或 --data3. -H 或

Linux磁盘分区、格式化和挂载方式

《Linux磁盘分区、格式化和挂载方式》本文详细介绍了Linux系统中磁盘分区、格式化和挂载的基本操作步骤和命令,包括MBR和GPT分区表的区别、fdisk和gdisk命令的使用、常见的文件系统格式以... 目录一、磁盘分区表分类二、fdisk命令创建分区1、交互式的命令2、分区主分区3、创建扩展分区,然后

Linux中chmod权限设置方式

《Linux中chmod权限设置方式》本文介绍了Linux系统中文件和目录权限的设置方法,包括chmod、chown和chgrp命令的使用,以及权限模式和符号模式的详细说明,通过这些命令,用户可以灵活... 目录设置基本权限命令:chmod1、权限介绍2、chmod命令常见用法和示例3、文件权限详解4、ch

Linux内核之内核裁剪详解

《Linux内核之内核裁剪详解》Linux内核裁剪是通过移除不必要的功能和模块,调整配置参数来优化内核,以满足特定需求,裁剪的方法包括使用配置选项、模块化设计和优化配置参数,图形裁剪工具如makeme... 目录简介一、 裁剪的原因二、裁剪的方法三、图形裁剪工具四、操作说明五、make menuconfig

Mycat搭建分库分表方式

《Mycat搭建分库分表方式》文章介绍了如何使用分库分表架构来解决单表数据量过大带来的性能和存储容量限制的问题,通过在一对主从复制节点上配置数据源,并使用分片算法将数据分配到不同的数据库表中,可以有效... 目录分库分表解决的问题分库分表架构添加数据验证结果 总结分库分表解决的问题单表数据量过大带来的性能

Java汇编源码如何查看环境搭建

《Java汇编源码如何查看环境搭建》:本文主要介绍如何在IntelliJIDEA开发环境中搭建字节码和汇编环境,以便更好地进行代码调优和JVM学习,首先,介绍了如何配置IntelliJIDEA以方... 目录一、简介二、在IDEA开发环境中搭建汇编环境2.1 在IDEA中搭建字节码查看环境2.1.1 搭建步

Linux使用nohup命令在后台运行脚本

《Linux使用nohup命令在后台运行脚本》在Linux或类Unix系统中,后台运行脚本是一项非常实用的技能,尤其适用于需要长时间运行的任务或服务,本文我们来看看如何使用nohup命令在后台... 目录nohup 命令简介基本用法输出重定向& 符号的作用后台进程的特点注意事项实际应用场景长时间运行的任务服

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

什么是cron? Linux系统下Cron定时任务使用指南

《什么是cron?Linux系统下Cron定时任务使用指南》在日常的Linux系统管理和维护中,定时执行任务是非常常见的需求,你可能需要每天执行备份任务、清理系统日志或运行特定的脚本,而不想每天... 在管理 linux 服务器的过程中,总有一些任务需要我们定期或重复执行。就比如备份任务,通常会选在服务器资