本文主要是介绍linux(manjaro) tensorflow2.1 conda cuda10 双显卡笔记本深度学习环境搭建,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
linux(manjaro) tensorflow2.1 conda cuda10 双显卡笔记本深度学习环境搭建
下学期要学tensorflow,看着我可怜的1050ti,流下了贫穷的泪水,但无奈要做实验啊,学还是得学的,安装过程记录一下,仅供参考
关于manjaro
之前写过一篇怎么安装manjaro的文章来着,虽然manjaro在国内不是大众发行版,但在尝试过诸多linux后,我最终留在了manjaro.
双显卡驱动
我的驱动,直接上图
Anaconda
一开始我尝试用pacman
直接安装tf cuda cudnn
等,很简单
tf CPU
sudo pacman -S python-tensorflow-opt
tf GPU
sudo pacman -S python-tensorflow-opt-cuda cuda cudnn
但是GUP版装好之后运行测试会报
RuntimeError: cuda runtime error (35) : CUDA driver version is insufficient for CUDA runtime version at …
原因:CUDA驱动版本不满足CUDA运行版本。
具体显卡驱动与CUDA版本对应见下
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
我的是440xx
而软件库中提供的是cuda11
不想换驱动,那就给 cuda 和 tf 降级
conda安装
sudo pacman -S anacondaconda -h
如果有conda:命令未找到
的报错,就需要修改一下环境变量
export PATH=$PATH:/opt/anaconda/bin
CUDA CUDNN
conda install cudatoolkit=10.1 cudnn=7.6 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/linux-64/
tensorflow2.1
conda create -n tf2-gpu tensorflow-gpu==2.1 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/linux-64/
装好后,检查环境
conda env list# conda environments:
#
tf2-gpu $home/.conda/envs/tf2-gpu
base * /opt/anaconda
进入环境并测试
与win不同,linux进入conda环境要使用source activate
,退出则是conda deactivate
要进入刚才搭建的tf2的环境只需要输入source activate tf2-gpu
source activate tf2-gpu(tf2-gpu) git clone https://hub.fastgit.org/guangfuhao/Deeplearning(tf2-gpu) cd Deeplearning(tf2-gpu) cp mnist.npz <你的测试目录>(tf2-gpu) pip install matplotlib numpy
编辑测试程序,很短就用vim test.py
,注意将这个test.py
与之前下载的mnist.npz
放到同一目录下
测试程序
# 1.Import the neccessary libraries needed
import numpy as np
import tensorflow as tf
import matplotlib
from matplotlib import pyplot as plt######################################################################### 2.Set default parameters for plots
matplotlib.rcParams['font.size'] = 20
matplotlib.rcParams['figure.titlesize'] = 20
matplotlib.rcParams['figure.figsize'] = [9, 7]
matplotlib.rcParams['font.family'] = ['STKaiTi']
matplotlib.rcParams['axes.unicode_minus'] = False########################################################################
# 3.Initialize Parameters# Initialize learning rate
lr = 1e-3
# Initialize loss array
losses = []
# Initialize the weights layers and the bias layers
w1 = tf.Variable(tf.random.truncated_normal([784, 256], stddev=0.1))
b1 = tf.Variable(tf.zeros([256]))
w2 = tf.Variable(tf.random.truncated_normal([256, 128], stddev=0.1))
b2 = tf.Variable(tf.zeros([128]))
w3 = tf.Variable(tf.random.truncated_normal([128, 10], stddev=0.1))
b3 = tf.Variable(tf.zeros([10]))######################################################################### 4.Import the minist dataset by numpy offlinedef load_mnist():# define the directory where mnist.npz is(Please watch the '\'!)path = r'./mnist.npz'f = np.load(path)x_train, y_train = f['x_train'], f['y_train']x_test, y_test = f['x_test'], f['y_test']f.close()return (x_train, y_train), (x_test, y_test)(train_image, train_label), _ = load_mnist()
x = tf.convert_to_tensor(train_image, dtype=tf.float32) / 255.
y = tf.convert_to_tensor(train_label, dtype=tf.int32)
# Reshape x from [60k, 28, 28] to [60k, 28*28]
x = tf.reshape(x, [-1, 28*28])######################################################################### 5.Combine x and y as a tuple and batch them
train_db = tf.data.Dataset.from_tensor_slices((x, y)).batch(128)
'''
#Encapsulate train_db as an iterator object
train_iter = iter(train_db)
sample = next(train_iter)
'''######################################################################### 6.Iterate database for 20 times
for epoch in range(20):# For every batch:x:[128, 28*28],y: [128]for step, (x, y) in enumerate(train_db):with tf.GradientTape() as tape: # tf.Variable# x: [b, 28*28]# h1 = x@w1 + b1# [b, 784]@[784, 256] + [256] => [b, 256] + [256] => [b, 256] + [b, 256]h1 = x@w1 + tf.broadcast_to(b1, [x.shape[0], 256])h1 = tf.nn.relu(h1)# [b, 256] => [b, 128]h2 = h1@w2 + b2h2 = tf.nn.relu(h2)# [b, 128] => [b, 10]out = h2@w3 + b3# y: [b] => [b, 10]y_onehot = tf.one_hot(y, depth=10)# compute loss# mse = mean(sum(y-out)^2)# [b, 10]loss = tf.square(y_onehot - out)# mean: scalarloss = tf.reduce_mean(loss)# compute gradientsgrads = tape.gradient(loss, [w1, b1, w2, b2, w3, b3])# Update the weights and the biasw1.assign_sub(lr * grads[0])b1.assign_sub(lr * grads[1])w2.assign_sub(lr * grads[2])b2.assign_sub(lr * grads[3])w3.assign_sub(lr * grads[4])b3.assign_sub(lr * grads[5])if step % 100 == 0:print(epoch, step, 'loss:', float(loss))losses.append(float(loss))######################################################################### 7.Show the change of losses via matplotlib
plt.figure()
plt.plot(losses, color='C0', marker='s', label='训练')
plt.xlabel('Epoch')
plt.legend()
plt.ylabel('MSE')
# Save figure as '.svg' file
# plt.savefig('forward.svg')
plt.show()
python3 test.py
不出意外会有类似的输出
最后画出一张图
ps: 如何优雅的监控GPU
watch -n 1 nvidia-smi
好了,环境搭建大功告成
在我的机器上这个过程是成立的,如果有什么疑问欢迎在评论区留言
这篇关于linux(manjaro) tensorflow2.1 conda cuda10 双显卡笔记本深度学习环境搭建的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!