概率统计Python计算:单个正态总体均值单侧假设的T检验

本文主要是介绍概率统计Python计算:单个正态总体均值单侧假设的T检验,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
正态总体的方差 σ 2 \sigma^2 σ2未知的情况下,对总体均值 μ ≤ μ 0 \mu\leq\mu_0 μμ0(或 μ ≥ μ 0 \mu\geq\mu_0 μμ0)进行显著水平 α \alpha α下的假设检验,检验统计量 X ‾ − μ 0 S / n \frac{\overline{X}-\mu_0}{S/\sqrt{n}} S/n Xμ0~ t ( n − 1 ) t(n-1) t(n1)。其中 X ‾ \overline{X} X S S S分别为样本均值和样本标准差。用p值法的计算函数定义如下。

from scipy.stats import t	#导入t
def ttestR(T, df, alpha):	#右侧检验函数p=t.sf(T, df)return p>=alpha
def ttestL(T, df, alpha):	#左侧检验函数p=t.cdf(T, df)return p>=alpha

程序的第2~4行定义T方法右侧检验函数ttestR,第5~7行定义左侧检验函数ttestL。两个函数函数的参数T、df和alpha分别表示检测统计量观测值 x ‾ − μ 0 s / n \frac{\overline{x}-\mu_0}{s/\sqrt{n}} s/n xμ0 t t t分布的自由度 n − 1 n-1 n1和显著水平 α \alpha α。对于右侧检验函数ttestR,第3行计算p值为 t ( n − 1 ) t(n-1) t(n1)分布的残存函数在统计量值T处的函数值。而对于左侧检验函数ttestL,第6行计算p值为 t ( n − 1 ) t(n-1) t(n1)分布的累积分布函数在统计量值T处的函数值。返回的布尔值p>=alpha为True,则接受假设 H 0 : μ ≤ μ 0 H_0:\mu\leq\mu_0 H0:μμ0(或 μ ≥ μ 0 \mu\geq\mu_0 μμ0),否则拒绝 H 0 H_0 H0
例1 某种元件的寿命 X X X(以h计)服从正态分布 N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2) μ \mu μ σ 2 \sigma^2 σ2均未知。现测得16只元件的寿命如下:
159 , 280 , 101 , 212 , 224 , 379 , 179 , 264 , 222 , 362 , 168 , 250 , 149 , 260 , 485 , 170 159, 280, 101, 212, 224, 379, 179, 264,222, 362, 168, 250, 149, 260, 485, 170 159,280,101,212,224,379,179,264,222,362,168,250,149,260,485,170
问是否有理由认为元件的寿命大于225h?
解: 按题意需对假设
H 0 : μ ≥ 225 , H 1 : μ < 225. H_0:\mu\geq225, H_1:\mu<225. H0:μ225,H1:μ<225.
作左侧检验,下列代码完成本例计算。

import numpy as np                                  #导入numpy
x=np.array([159, 280, 101, 212, 224, 379, 179, 264, #样本数据222, 362, 168, 250, 149, 260, 485, 170])
xmean=x.mean()                                      #样本均值
s=x.std(ddof=1)                                     #样本均方差
n=x.size                                            #样本容量
mu0=225                                             #总体均值假设值
alpha=0.05                                          #显著水平
T=(xmean-mu0)/(s/np.sqrt(n))						#检验统计量值
accept=ttestL(T, n-1, alpha)          				#计算左侧检验
print('mu>=%d is %s.'%(mu0, accept))

第2~8行根据题面设置已知数据,第9行计算检验统计量值 x ‾ − μ 0 s / n \frac{\overline{x}-\mu_0}{s/\sqrt{n}} s/n xμ0为T,第10行调用ttestL函数完成左侧检验。运行程序,输出

mu>=225 is True.

表示接受假设 H 0 : μ ≥ μ 0 = 225 H_0:\mu\geq\mu_0=225 H0:μμ0=225,即有理由认为元件的寿命大于225h。
例2 下面列出的是某工厂随机选取的20只部件的装配时间(min):
9.8 , 10.4 , 10.6 , 9.6 , 9.7 , 9.9 , 10.9 , 11.1 , 9.6 , 10.2 , 10.3 , 9.6 , 9.9 , 11.2 , 10.6 , 9.8 , 10.5 , 10.1 , 10.5 , 9.7 9.8, 10.4, 10.6, 9.6, 9.7, 9.9, 10.9, 11.1, 9.6, 10.2, \\10.3, 9.6, 9.9, 11.2, 10.6, 9.8, 10.5, 10.1, 10.5, 9.7 9.8,10.4,10.6,9.6,9.7,9.9,10.9,11.1,9.6,10.2,10.3,9.6,9.9,11.2,10.6,9.8,10.5,10.1,10.5,9.7
设装配时间的总体服从正态分布 N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2) μ \mu μ σ 2 \sigma^2 σ2均未知。是否可以认为装配时间的均值 μ \mu μ大于10(取 α = 0.05 \alpha=0.05 α=0.05)?
解: 按题意需对假设 H 0 : μ > 10 H_0:\mu>10 H0:μ>10作左侧检验。下列代码完成本例计算。

import numpy as np						#导入numpy
x=np.array([9.8, 10.4, 10.6, 9.6, 9.7,	#样本数据9.9, 10.9, 11.1, 9.6, 10.2,10.3, 9.6, 9.9, 11.2, 10.6,9.8, 10.5, 10.1, 10.5, 9.7])
xmean=x.mean()							#样本均值
s=x.std(ddof=1)							#样本均方差
n=x.size								#样本容量
mu0=10									#假设总体均值
alpha=0.05								#显著水平
T=(xmean-mu0)/(s/np.sqrt(n))			#检测统计量值
accept=ttestL(T, n-1, alpha)			#计算检验
print('mu>=%d is %s.'%(mu0, accept))

运行程序,输出

mu>=10 is True.

表示接受假设 H 0 H_0 H0,即装配时间的均值大于10。
写博不易,敬请支持:
如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!
返回《导引》

这篇关于概率统计Python计算:单个正态总体均值单侧假设的T检验的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/251735

相关文章

Python将博客内容html导出为Markdown格式

《Python将博客内容html导出为Markdown格式》Python将博客内容html导出为Markdown格式,通过博客url地址抓取文章,分析并提取出文章标题和内容,将内容构建成html,再转... 目录一、为什么要搞?二、准备如何搞?三、说搞咱就搞!抓取文章提取内容构建html转存markdown

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专