概率统计Python计算:单个正态总体均值单侧假设的T检验

本文主要是介绍概率统计Python计算:单个正态总体均值单侧假设的T检验,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
正态总体的方差 σ 2 \sigma^2 σ2未知的情况下,对总体均值 μ ≤ μ 0 \mu\leq\mu_0 μμ0(或 μ ≥ μ 0 \mu\geq\mu_0 μμ0)进行显著水平 α \alpha α下的假设检验,检验统计量 X ‾ − μ 0 S / n \frac{\overline{X}-\mu_0}{S/\sqrt{n}} S/n Xμ0~ t ( n − 1 ) t(n-1) t(n1)。其中 X ‾ \overline{X} X S S S分别为样本均值和样本标准差。用p值法的计算函数定义如下。

from scipy.stats import t	#导入t
def ttestR(T, df, alpha):	#右侧检验函数p=t.sf(T, df)return p>=alpha
def ttestL(T, df, alpha):	#左侧检验函数p=t.cdf(T, df)return p>=alpha

程序的第2~4行定义T方法右侧检验函数ttestR,第5~7行定义左侧检验函数ttestL。两个函数函数的参数T、df和alpha分别表示检测统计量观测值 x ‾ − μ 0 s / n \frac{\overline{x}-\mu_0}{s/\sqrt{n}} s/n xμ0 t t t分布的自由度 n − 1 n-1 n1和显著水平 α \alpha α。对于右侧检验函数ttestR,第3行计算p值为 t ( n − 1 ) t(n-1) t(n1)分布的残存函数在统计量值T处的函数值。而对于左侧检验函数ttestL,第6行计算p值为 t ( n − 1 ) t(n-1) t(n1)分布的累积分布函数在统计量值T处的函数值。返回的布尔值p>=alpha为True,则接受假设 H 0 : μ ≤ μ 0 H_0:\mu\leq\mu_0 H0:μμ0(或 μ ≥ μ 0 \mu\geq\mu_0 μμ0),否则拒绝 H 0 H_0 H0
例1 某种元件的寿命 X X X(以h计)服从正态分布 N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2) μ \mu μ σ 2 \sigma^2 σ2均未知。现测得16只元件的寿命如下:
159 , 280 , 101 , 212 , 224 , 379 , 179 , 264 , 222 , 362 , 168 , 250 , 149 , 260 , 485 , 170 159, 280, 101, 212, 224, 379, 179, 264,222, 362, 168, 250, 149, 260, 485, 170 159,280,101,212,224,379,179,264,222,362,168,250,149,260,485,170
问是否有理由认为元件的寿命大于225h?
解: 按题意需对假设
H 0 : μ ≥ 225 , H 1 : μ < 225. H_0:\mu\geq225, H_1:\mu<225. H0:μ225,H1:μ<225.
作左侧检验,下列代码完成本例计算。

import numpy as np                                  #导入numpy
x=np.array([159, 280, 101, 212, 224, 379, 179, 264, #样本数据222, 362, 168, 250, 149, 260, 485, 170])
xmean=x.mean()                                      #样本均值
s=x.std(ddof=1)                                     #样本均方差
n=x.size                                            #样本容量
mu0=225                                             #总体均值假设值
alpha=0.05                                          #显著水平
T=(xmean-mu0)/(s/np.sqrt(n))						#检验统计量值
accept=ttestL(T, n-1, alpha)          				#计算左侧检验
print('mu>=%d is %s.'%(mu0, accept))

第2~8行根据题面设置已知数据,第9行计算检验统计量值 x ‾ − μ 0 s / n \frac{\overline{x}-\mu_0}{s/\sqrt{n}} s/n xμ0为T,第10行调用ttestL函数完成左侧检验。运行程序,输出

mu>=225 is True.

表示接受假设 H 0 : μ ≥ μ 0 = 225 H_0:\mu\geq\mu_0=225 H0:μμ0=225,即有理由认为元件的寿命大于225h。
例2 下面列出的是某工厂随机选取的20只部件的装配时间(min):
9.8 , 10.4 , 10.6 , 9.6 , 9.7 , 9.9 , 10.9 , 11.1 , 9.6 , 10.2 , 10.3 , 9.6 , 9.9 , 11.2 , 10.6 , 9.8 , 10.5 , 10.1 , 10.5 , 9.7 9.8, 10.4, 10.6, 9.6, 9.7, 9.9, 10.9, 11.1, 9.6, 10.2, \\10.3, 9.6, 9.9, 11.2, 10.6, 9.8, 10.5, 10.1, 10.5, 9.7 9.8,10.4,10.6,9.6,9.7,9.9,10.9,11.1,9.6,10.2,10.3,9.6,9.9,11.2,10.6,9.8,10.5,10.1,10.5,9.7
设装配时间的总体服从正态分布 N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2) μ \mu μ σ 2 \sigma^2 σ2均未知。是否可以认为装配时间的均值 μ \mu μ大于10(取 α = 0.05 \alpha=0.05 α=0.05)?
解: 按题意需对假设 H 0 : μ > 10 H_0:\mu>10 H0:μ>10作左侧检验。下列代码完成本例计算。

import numpy as np						#导入numpy
x=np.array([9.8, 10.4, 10.6, 9.6, 9.7,	#样本数据9.9, 10.9, 11.1, 9.6, 10.2,10.3, 9.6, 9.9, 11.2, 10.6,9.8, 10.5, 10.1, 10.5, 9.7])
xmean=x.mean()							#样本均值
s=x.std(ddof=1)							#样本均方差
n=x.size								#样本容量
mu0=10									#假设总体均值
alpha=0.05								#显著水平
T=(xmean-mu0)/(s/np.sqrt(n))			#检测统计量值
accept=ttestL(T, n-1, alpha)			#计算检验
print('mu>=%d is %s.'%(mu0, accept))

运行程序,输出

mu>=10 is True.

表示接受假设 H 0 H_0 H0,即装配时间的均值大于10。
写博不易,敬请支持:
如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!
返回《导引》

这篇关于概率统计Python计算:单个正态总体均值单侧假设的T检验的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/251735

相关文章

Python判断for循环最后一次的6种方法

《Python判断for循环最后一次的6种方法》在Python中,通常我们不会直接判断for循环是否正在执行最后一次迭代,因为Python的for循环是基于可迭代对象的,它不知道也不关心迭代的内部状态... 目录1.使用enuhttp://www.chinasem.cnmerate()和len()来判断for

使用Python实现高效的端口扫描器

《使用Python实现高效的端口扫描器》在网络安全领域,端口扫描是一项基本而重要的技能,通过端口扫描,可以发现目标主机上开放的服务和端口,这对于安全评估、渗透测试等有着不可忽视的作用,本文将介绍如何使... 目录1. 端口扫描的基本原理2. 使用python实现端口扫描2.1 安装必要的库2.2 编写端口扫

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

使用Python合并 Excel单元格指定行列或单元格范围

《使用Python合并Excel单元格指定行列或单元格范围》合并Excel单元格是Excel数据处理和表格设计中的一项常用操作,本文将介绍如何通过Python合并Excel中的指定行列或单... 目录python Excel库安装Python合并Excel 中的指定行Python合并Excel 中的指定列P

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

Python调用另一个py文件并传递参数常见的方法及其应用场景

《Python调用另一个py文件并传递参数常见的方法及其应用场景》:本文主要介绍在Python中调用另一个py文件并传递参数的几种常见方法,包括使用import语句、exec函数、subproce... 目录前言1. 使用import语句1.1 基本用法1.2 导入特定函数1.3 处理文件路径2. 使用ex

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Python进阶之Excel基本操作介绍

《Python进阶之Excel基本操作介绍》在现实中,很多工作都需要与数据打交道,Excel作为常用的数据处理工具,一直备受人们的青睐,本文主要为大家介绍了一些Python中Excel的基本操作,希望... 目录概述写入使用 xlwt使用 XlsxWriter读取修改概述在现实中,很多工作都需要与数据打交