概率统计Python计算:单个正态总体均值单侧假设的T检验

本文主要是介绍概率统计Python计算:单个正态总体均值单侧假设的T检验,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
正态总体的方差 σ 2 \sigma^2 σ2未知的情况下,对总体均值 μ ≤ μ 0 \mu\leq\mu_0 μμ0(或 μ ≥ μ 0 \mu\geq\mu_0 μμ0)进行显著水平 α \alpha α下的假设检验,检验统计量 X ‾ − μ 0 S / n \frac{\overline{X}-\mu_0}{S/\sqrt{n}} S/n Xμ0~ t ( n − 1 ) t(n-1) t(n1)。其中 X ‾ \overline{X} X S S S分别为样本均值和样本标准差。用p值法的计算函数定义如下。

from scipy.stats import t	#导入t
def ttestR(T, df, alpha):	#右侧检验函数p=t.sf(T, df)return p>=alpha
def ttestL(T, df, alpha):	#左侧检验函数p=t.cdf(T, df)return p>=alpha

程序的第2~4行定义T方法右侧检验函数ttestR,第5~7行定义左侧检验函数ttestL。两个函数函数的参数T、df和alpha分别表示检测统计量观测值 x ‾ − μ 0 s / n \frac{\overline{x}-\mu_0}{s/\sqrt{n}} s/n xμ0 t t t分布的自由度 n − 1 n-1 n1和显著水平 α \alpha α。对于右侧检验函数ttestR,第3行计算p值为 t ( n − 1 ) t(n-1) t(n1)分布的残存函数在统计量值T处的函数值。而对于左侧检验函数ttestL,第6行计算p值为 t ( n − 1 ) t(n-1) t(n1)分布的累积分布函数在统计量值T处的函数值。返回的布尔值p>=alpha为True,则接受假设 H 0 : μ ≤ μ 0 H_0:\mu\leq\mu_0 H0:μμ0(或 μ ≥ μ 0 \mu\geq\mu_0 μμ0),否则拒绝 H 0 H_0 H0
例1 某种元件的寿命 X X X(以h计)服从正态分布 N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2) μ \mu μ σ 2 \sigma^2 σ2均未知。现测得16只元件的寿命如下:
159 , 280 , 101 , 212 , 224 , 379 , 179 , 264 , 222 , 362 , 168 , 250 , 149 , 260 , 485 , 170 159, 280, 101, 212, 224, 379, 179, 264,222, 362, 168, 250, 149, 260, 485, 170 159,280,101,212,224,379,179,264,222,362,168,250,149,260,485,170
问是否有理由认为元件的寿命大于225h?
解: 按题意需对假设
H 0 : μ ≥ 225 , H 1 : μ < 225. H_0:\mu\geq225, H_1:\mu<225. H0:μ225,H1:μ<225.
作左侧检验,下列代码完成本例计算。

import numpy as np                                  #导入numpy
x=np.array([159, 280, 101, 212, 224, 379, 179, 264, #样本数据222, 362, 168, 250, 149, 260, 485, 170])
xmean=x.mean()                                      #样本均值
s=x.std(ddof=1)                                     #样本均方差
n=x.size                                            #样本容量
mu0=225                                             #总体均值假设值
alpha=0.05                                          #显著水平
T=(xmean-mu0)/(s/np.sqrt(n))						#检验统计量值
accept=ttestL(T, n-1, alpha)          				#计算左侧检验
print('mu>=%d is %s.'%(mu0, accept))

第2~8行根据题面设置已知数据,第9行计算检验统计量值 x ‾ − μ 0 s / n \frac{\overline{x}-\mu_0}{s/\sqrt{n}} s/n xμ0为T,第10行调用ttestL函数完成左侧检验。运行程序,输出

mu>=225 is True.

表示接受假设 H 0 : μ ≥ μ 0 = 225 H_0:\mu\geq\mu_0=225 H0:μμ0=225,即有理由认为元件的寿命大于225h。
例2 下面列出的是某工厂随机选取的20只部件的装配时间(min):
9.8 , 10.4 , 10.6 , 9.6 , 9.7 , 9.9 , 10.9 , 11.1 , 9.6 , 10.2 , 10.3 , 9.6 , 9.9 , 11.2 , 10.6 , 9.8 , 10.5 , 10.1 , 10.5 , 9.7 9.8, 10.4, 10.6, 9.6, 9.7, 9.9, 10.9, 11.1, 9.6, 10.2, \\10.3, 9.6, 9.9, 11.2, 10.6, 9.8, 10.5, 10.1, 10.5, 9.7 9.8,10.4,10.6,9.6,9.7,9.9,10.9,11.1,9.6,10.2,10.3,9.6,9.9,11.2,10.6,9.8,10.5,10.1,10.5,9.7
设装配时间的总体服从正态分布 N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2) μ \mu μ σ 2 \sigma^2 σ2均未知。是否可以认为装配时间的均值 μ \mu μ大于10(取 α = 0.05 \alpha=0.05 α=0.05)?
解: 按题意需对假设 H 0 : μ > 10 H_0:\mu>10 H0:μ>10作左侧检验。下列代码完成本例计算。

import numpy as np						#导入numpy
x=np.array([9.8, 10.4, 10.6, 9.6, 9.7,	#样本数据9.9, 10.9, 11.1, 9.6, 10.2,10.3, 9.6, 9.9, 11.2, 10.6,9.8, 10.5, 10.1, 10.5, 9.7])
xmean=x.mean()							#样本均值
s=x.std(ddof=1)							#样本均方差
n=x.size								#样本容量
mu0=10									#假设总体均值
alpha=0.05								#显著水平
T=(xmean-mu0)/(s/np.sqrt(n))			#检测统计量值
accept=ttestL(T, n-1, alpha)			#计算检验
print('mu>=%d is %s.'%(mu0, accept))

运行程序,输出

mu>=10 is True.

表示接受假设 H 0 H_0 H0,即装配时间的均值大于10。
写博不易,敬请支持:
如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!
返回《导引》

这篇关于概率统计Python计算:单个正态总体均值单侧假设的T检验的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/251735

相关文章

Python如何实现读取csv文件时忽略文件的编码格式

《Python如何实现读取csv文件时忽略文件的编码格式》我们再日常读取csv文件的时候经常会发现csv文件的格式有多种,所以这篇文章为大家介绍了Python如何实现读取csv文件时忽略文件的编码格式... 目录1、背景介绍2、库的安装3、核心代码4、完整代码1、背景介绍我们再日常读取csv文件的时候经常

基于Python实现多语言朗读与单词选择测验

《基于Python实现多语言朗读与单词选择测验》在数字化教育日益普及的今天,开发一款能够支持多语言朗读和单词选择测验的程序,对于语言学习者来说无疑是一个巨大的福音,下面我们就来用Python实现一个这... 目录一、项目概述二、环境准备三、实现朗读功能四、实现单词选择测验五、创建图形用户界面六、运行程序七、

浅析Python中的绝对导入与相对导入

《浅析Python中的绝对导入与相对导入》这篇文章主要为大家详细介绍了Python中的绝对导入与相对导入的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1 Imports快速介绍2 import语句的语法2.1 基本使用2.2 导入声明的样式3 绝对import和相对i

Python中配置文件的全面解析与使用

《Python中配置文件的全面解析与使用》在Python开发中,配置文件扮演着举足轻重的角色,它们允许开发者在不修改代码的情况下调整应用程序的行为,下面我们就来看看常见Python配置文件格式的使用吧... 目录一、INI配置文件二、YAML配置文件三、jsON配置文件四、TOML配置文件五、XML配置文件

Python中conda虚拟环境创建及使用小结

《Python中conda虚拟环境创建及使用小结》本文主要介绍了Python中conda虚拟环境创建及使用小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录0.前言1.Miniconda安装2.conda本地基本操作3.创建conda虚拟环境4.激活c

使用Python创建一个能够筛选文件的PDF合并工具

《使用Python创建一个能够筛选文件的PDF合并工具》这篇文章主要为大家详细介绍了如何使用Python创建一个能够筛选文件的PDF合并工具,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录背景主要功能全部代码代码解析1. 初始化 wx.Frame 窗口2. 创建工具栏3. 创建布局和界面控件4

一文详解如何在Python中使用Requests库

《一文详解如何在Python中使用Requests库》:本文主要介绍如何在Python中使用Requests库的相关资料,Requests库是Python中常用的第三方库,用于简化HTTP请求的发... 目录前言1. 安装Requests库2. 发起GET请求3. 发送带有查询参数的GET请求4. 发起PO

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

Python进行PDF文件拆分的示例详解

《Python进行PDF文件拆分的示例详解》在日常生活中,我们常常会遇到大型的PDF文件,难以发送,将PDF拆分成多个小文件是一个实用的解决方案,下面我们就来看看如何使用Python实现PDF文件拆分... 目录使用工具将PDF按页数拆分将PDF的每一页拆分为单独的文件将PDF按指定页数拆分根据页码范围拆分

Python中常用的四种取整方式分享

《Python中常用的四种取整方式分享》在数据处理和数值计算中,取整操作是非常常见的需求,Python提供了多种取整方式,本文为大家整理了四种常用的方法,希望对大家有所帮助... 目录引言向零取整(Truncate)向下取整(Floor)向上取整(Ceil)四舍五入(Round)四种取整方式的对比综合示例应