概率统计Python计算:单个正态总体均值单侧假设的T检验

本文主要是介绍概率统计Python计算:单个正态总体均值单侧假设的T检验,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
正态总体的方差 σ 2 \sigma^2 σ2未知的情况下,对总体均值 μ ≤ μ 0 \mu\leq\mu_0 μμ0(或 μ ≥ μ 0 \mu\geq\mu_0 μμ0)进行显著水平 α \alpha α下的假设检验,检验统计量 X ‾ − μ 0 S / n \frac{\overline{X}-\mu_0}{S/\sqrt{n}} S/n Xμ0~ t ( n − 1 ) t(n-1) t(n1)。其中 X ‾ \overline{X} X S S S分别为样本均值和样本标准差。用p值法的计算函数定义如下。

from scipy.stats import t	#导入t
def ttestR(T, df, alpha):	#右侧检验函数p=t.sf(T, df)return p>=alpha
def ttestL(T, df, alpha):	#左侧检验函数p=t.cdf(T, df)return p>=alpha

程序的第2~4行定义T方法右侧检验函数ttestR,第5~7行定义左侧检验函数ttestL。两个函数函数的参数T、df和alpha分别表示检测统计量观测值 x ‾ − μ 0 s / n \frac{\overline{x}-\mu_0}{s/\sqrt{n}} s/n xμ0 t t t分布的自由度 n − 1 n-1 n1和显著水平 α \alpha α。对于右侧检验函数ttestR,第3行计算p值为 t ( n − 1 ) t(n-1) t(n1)分布的残存函数在统计量值T处的函数值。而对于左侧检验函数ttestL,第6行计算p值为 t ( n − 1 ) t(n-1) t(n1)分布的累积分布函数在统计量值T处的函数值。返回的布尔值p>=alpha为True,则接受假设 H 0 : μ ≤ μ 0 H_0:\mu\leq\mu_0 H0:μμ0(或 μ ≥ μ 0 \mu\geq\mu_0 μμ0),否则拒绝 H 0 H_0 H0
例1 某种元件的寿命 X X X(以h计)服从正态分布 N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2) μ \mu μ σ 2 \sigma^2 σ2均未知。现测得16只元件的寿命如下:
159 , 280 , 101 , 212 , 224 , 379 , 179 , 264 , 222 , 362 , 168 , 250 , 149 , 260 , 485 , 170 159, 280, 101, 212, 224, 379, 179, 264,222, 362, 168, 250, 149, 260, 485, 170 159,280,101,212,224,379,179,264,222,362,168,250,149,260,485,170
问是否有理由认为元件的寿命大于225h?
解: 按题意需对假设
H 0 : μ ≥ 225 , H 1 : μ < 225. H_0:\mu\geq225, H_1:\mu<225. H0:μ225,H1:μ<225.
作左侧检验,下列代码完成本例计算。

import numpy as np                                  #导入numpy
x=np.array([159, 280, 101, 212, 224, 379, 179, 264, #样本数据222, 362, 168, 250, 149, 260, 485, 170])
xmean=x.mean()                                      #样本均值
s=x.std(ddof=1)                                     #样本均方差
n=x.size                                            #样本容量
mu0=225                                             #总体均值假设值
alpha=0.05                                          #显著水平
T=(xmean-mu0)/(s/np.sqrt(n))						#检验统计量值
accept=ttestL(T, n-1, alpha)          				#计算左侧检验
print('mu>=%d is %s.'%(mu0, accept))

第2~8行根据题面设置已知数据,第9行计算检验统计量值 x ‾ − μ 0 s / n \frac{\overline{x}-\mu_0}{s/\sqrt{n}} s/n xμ0为T,第10行调用ttestL函数完成左侧检验。运行程序,输出

mu>=225 is True.

表示接受假设 H 0 : μ ≥ μ 0 = 225 H_0:\mu\geq\mu_0=225 H0:μμ0=225,即有理由认为元件的寿命大于225h。
例2 下面列出的是某工厂随机选取的20只部件的装配时间(min):
9.8 , 10.4 , 10.6 , 9.6 , 9.7 , 9.9 , 10.9 , 11.1 , 9.6 , 10.2 , 10.3 , 9.6 , 9.9 , 11.2 , 10.6 , 9.8 , 10.5 , 10.1 , 10.5 , 9.7 9.8, 10.4, 10.6, 9.6, 9.7, 9.9, 10.9, 11.1, 9.6, 10.2, \\10.3, 9.6, 9.9, 11.2, 10.6, 9.8, 10.5, 10.1, 10.5, 9.7 9.8,10.4,10.6,9.6,9.7,9.9,10.9,11.1,9.6,10.2,10.3,9.6,9.9,11.2,10.6,9.8,10.5,10.1,10.5,9.7
设装配时间的总体服从正态分布 N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2) μ \mu μ σ 2 \sigma^2 σ2均未知。是否可以认为装配时间的均值 μ \mu μ大于10(取 α = 0.05 \alpha=0.05 α=0.05)?
解: 按题意需对假设 H 0 : μ > 10 H_0:\mu>10 H0:μ>10作左侧检验。下列代码完成本例计算。

import numpy as np						#导入numpy
x=np.array([9.8, 10.4, 10.6, 9.6, 9.7,	#样本数据9.9, 10.9, 11.1, 9.6, 10.2,10.3, 9.6, 9.9, 11.2, 10.6,9.8, 10.5, 10.1, 10.5, 9.7])
xmean=x.mean()							#样本均值
s=x.std(ddof=1)							#样本均方差
n=x.size								#样本容量
mu0=10									#假设总体均值
alpha=0.05								#显著水平
T=(xmean-mu0)/(s/np.sqrt(n))			#检测统计量值
accept=ttestL(T, n-1, alpha)			#计算检验
print('mu>=%d is %s.'%(mu0, accept))

运行程序,输出

mu>=10 is True.

表示接受假设 H 0 H_0 H0,即装配时间的均值大于10。
写博不易,敬请支持:
如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!
返回《导引》

这篇关于概率统计Python计算:单个正态总体均值单侧假设的T检验的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/251735

相关文章

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

使用Pandas进行均值填充的实现

《使用Pandas进行均值填充的实现》缺失数据(NaN值)是一个常见的问题,我们可以通过多种方法来处理缺失数据,其中一种常用的方法是均值填充,本文主要介绍了使用Pandas进行均值填充的实现,感兴趣的... 目录什么是均值填充?为什么选择均值填充?均值填充的步骤实际代码示例总结在数据分析和处理过程中,缺失数

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python ZIP文件操作技巧详解

《PythonZIP文件操作技巧详解》在数据处理和系统开发中,ZIP文件操作是开发者必须掌握的核心技能,Python标准库提供的zipfile模块以简洁的API和跨平台特性,成为处理ZIP文件的首选... 目录一、ZIP文件操作基础三板斧1.1 创建压缩包1.2 解压操作1.3 文件遍历与信息获取二、进阶技

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py