最短路径算法和维特比算法、HMM假设

2023-10-21 00:08

本文主要是介绍最短路径算法和维特比算法、HMM假设,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最短路径计算分静态最短路计算和动态最短路计算。
静态路径最短路径算法是外界环境不变,计算最短路径。主要有Dijkstra算法,A*(A Star)算法。 动态路径最短路是外界环境不断发生变化,即不能计算预测的情况下计算最短路。如在游戏中敌人或障碍物不断移动的情况下,典型的有D*算法。

Dijkstra算法

Dijkstra算法是典型最短路算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。

基本思想

引进两个集合S和U。S的作用是记录已求出最短路径的顶点(以及相应的最短路径长度),而U则是记录还未求出最短路径的顶点(以及该顶点到起点s的距离)。

  1. 初始时,S只包含起点s;U包含除s外的其他顶点,且U中顶点的距离为"起点s到该顶点的距离"[例如,U中顶点v的距离为(s,v)的长度,然后s和v不相邻,则v的距离为∞]。
  2. 从U中选出"距离最短的顶点k",并将顶点k加入到S中;同时,从U中移除顶点k。
  3. 更新U中各个顶点到起点s的距离。之所以更新U中顶点的距离,是由于上一步中确定了k是求出最短路径的顶点,从而可以利用k来更新其它顶点的距离;例如,(s,v)的距离可能大于(s,k)+(k,v)的距离。
  4. 重复步骤(2)和(3),直到遍历完所有顶点。

大概过程:

创建两个表,OPEN, CLOSE。
OPEN表保存所有已生成而未考察的节点,CLOSED表中记录已访问过的节点。
1. 访问路网中里起始点最近且没有被检查过的点,把这个点放入OPEN组中等待检查。
2. 从OPEN表中找出距起始点最近的点,把这个点放到CLOSE表中。
3. 遍历考察2中这个点的子节点。求出这些子节点距起始点的距离值,放子节点到OPEN表中。
4. 重复2,3,步。直到OPEN表为空,或找到目标点。

在这里插入图片描述黑色圆圈表示经过遍历计算过的点由图中可以看到Dijkstra算法从起始点开始向周围层层计算扩展,在计算大量节点后,到达目标点,所以速度慢效率低。
提高Dijkstra搜索速度的方法很多,常用的有用Dijkstra从起始点和终点同时搜索的方法。

Dijkstra算法求的是起点到其他所有点的最短路径,时间复杂度O(n2),空间复杂度O(n)。
dijkstra算法

A*(A Star)算法:启发式(heuristic)算法

A*算法是一种静态路网中求解最短路最有效的方法,公式表示为f(n)=g(n)+h(n)。

f(n) 是经过节点n时从初始点到目标点的估价函数,
g(n) 是在状态空间中从初始节点到n节点的实际代价,即起始节点到当前节点的实际代价.
h(n)是从n到目标节点最佳路径的估计代价。即当前节点到目标节点的估计代价.

当h(n) = 0, g(n) = d, 则f(n) = g(n)就变为了宽度优先搜索,也就是如果不需要启发,那就是宽度优先搜索的算法了。保证找到最短路径(最优解的)条件,关键在于估价函数h(n)的选取:

  • 估价值h(n)<= n到目标节点的距离实际值,这种情况下,搜索的点数多,搜索范围大,效率低。但能得到最优解。
  • 如果 估价值>实际值, 搜索的点数少,搜索范围小,效率高,但不能保证得到最优解。
  • 估价值与实际值越接近,估价函数取得就越好。

对于几何路网来说,可以取两节点间欧几理德距离(直线距离)做为估价值,即f=g(n)+sqrt((dx-nx)(dx-nx)+(dy-ny)(dy-ny));这样估价函数f在g值一定的情况下,会或多或少的受估价值h的制约,节点距目标点近,h值小,f值相对就小,能保证最短路的搜索向终点的方向进行。明显优于Dijstra算法的毫无无方向的向四周搜索。

搜索过程

A算法在运算过程中,每次从优先队列中选取f(n)值最小(优先级最高)的节点作为下一个待遍历的节点。
另外,A
算法使用两个集合来表示待遍历的节点,与已经遍历过的节点,这通常称之为open_set和close_set。

* 初始化open_set和close_set;
* 将起点加入open_set中,并设置优先级为0(优先级最高);
* 如果open_set不为空,则从open_set中选取优先级最高的节点n:* 如果节点n为终点,则:* 从终点开始逐步追踪parent节点,一直达到起点;* 返回找到的结果路径,算法结束;* 如果节点n不是终点,则:* 将节点n从open_set中删除,并加入close_set中;* 遍历节点n所有的邻近节点:* 如果邻近节点m在close_set中,则:* 跳过,选取下一个邻近节点* 如果邻近节点m也不在open_set中,则:* 设置节点m的parent为节点n* 计算节点m的优先级* 将节点m加入open_set中

在这里插入图片描述和上面Dijkstra算法使用同一个路网,相同的起点终点,用A*算法的情况,计算的点数从起始点逐渐向目标点方向扩展,计算的节点数量明显比Dijkstra少得多,效率很高,且能得到最优解。
路径规划之 A* 算法

Dijkstra和A*算法的比较

1.Dijkstra算法计算源点到其他所有点的最短路径长度,A关注点到点的最短路径(包括具体路径)。
2.Dijkstra算法是一种发散式的搜索,所以空间复杂度和时间复杂度都比较高。对路径上的当前点,A算法不但记录其到源点的代价,还计算当前点到目标点的期望代价,是一种启发式算法。
3.A算法和Dijistra算法的区别在于有无估价值,Dijistra算法相当于A算法中估价值为0的情况。

Floyd(弗洛伊德)算法( from JarryWell)

Floyd算法是一个经典的动态规划算法。是解决任意两点间的最短路径(称为多源最短路径问题)的一种算法,可以正确处理有向图或负权的最短路径问题。两次遍历,时间复杂度较高。三轮循环时间所以复杂度是O(n3), 需要保留任意两点间的距离所以空间复杂度是O(n2)

算法思想
从任意节点i到任意节点j的最短路径不外乎2种可能:1)直接从节点i到节点j,2)从节点i经过若干个节点k到节点j。所以,我们假设arcs(i,j)为节点i到节点j的最短路径的距离,对于每一个节点k,我们检查arcs(i,k) + arcs(k,j) < arcs(i,j)是否成立,如果成立,证明从节点i到节点k再到节点j的路径比节点i直接到节点j的路径短,我们便设置arcs(i,j) = arcs(i,k) + arcs(k,j),这样一来,当我们遍历完所有节点k,arcs(i,j)中记录的便是节点i到节点j的最短路径的距离。(由于动态规划算法在执行过程中,需要保存大量的临时状态(即小问题的解),因此它天生适用于用矩阵来作为其数据结构,因此在本算法中,我们将不使用Guava-Graph结构,而采用邻接矩阵来作为本例的数据结构)

for (int k = 1; k <= vexCount; k++) { //并入中转节点1,2,...vexCountfor (int i = 1; i <= vexCount; i++) {for (int j = 1; j < vexCount; j++) {if (arcs[i][k] + arcs[k][j] < arcs[i][j]) {arcs[i][j] = arcs[i][k] + arcs[k][j];path[i][j] = path[i][k]; //这里保存当前是中转的是哪个节点的信息}}}
}

维特比算法

维特比算法是一种动态规划算法,通常用于HMM最优状态序列的解码。
维特比算法的基础可以概括成下面三点:

  1. 如果概率最大的路径p(或者说最短路径)经过某个点,比如途中的X22,那么这条路径上的起始点S到X22的这段子路径Q,一定是S到X22之间的最短路径。否则,用S到X22的最短路径R替代Q,便构成一条比P更短的路径,这显然是矛盾的。证明了满足最优性原理。
  2. 从S到E的路径必定经过第i个时刻的某个状态,假定第i个时刻有k个状态,那么如果记录了从S到第i个状态的所有k个节点的最短路径,最终的最短路径必经过其中一条,这样,在任意时刻,只要考虑非常有限的最短路即可。
  3. 结合以上两点,假定当我们从状态i进入状态i+1时,从S到状态i上各个节的最短路径已经找到,并且记录在这些节点上,那么在计算从起点S到第i+1状态的某个节点Xi+1的最短路径时,只要考虑从S到前一个状态i所有的k个节点的最短路径,以及从这个节点到Xi+1,j的距离即可。

维特比算法
在这里插入图片描述

HMM假设

1)齐次马尔科夫假设

齐次马尔科夫假设,通俗地说就是 HMM 的任一时刻 t 的某一状态只依赖于其前一时刻的状态,与其它时刻的状态及观测无关,也与时刻 t 无关。

2)观测独立假设

观测独立性假设,是任一时刻的观测只依赖于该时刻的马尔科夫链的状态,与其他观测及状态无关。

这篇关于最短路径算法和维特比算法、HMM假设的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/250571

相关文章

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

Linux修改pip和conda缓存路径的几种方法

《Linux修改pip和conda缓存路径的几种方法》在Python生态中,pip和conda是两种常见的软件包管理工具,它们在安装、更新和卸载软件包时都会使用缓存来提高效率,适当地修改它们的缓存路径... 目录一、pip 和 conda 的缓存机制1. pip 的缓存机制默认缓存路径2. conda 的缓

Windows系统下如何查找JDK的安装路径

《Windows系统下如何查找JDK的安装路径》:本文主要介绍Windows系统下如何查找JDK的安装路径,文中介绍了三种方法,分别是通过命令行检查、使用verbose选项查找jre目录、以及查看... 目录一、确认是否安装了JDK二、查找路径三、另外一种方式如果很久之前安装了JDK,或者在别人的电脑上,想

Python中Windows和macOS文件路径格式不一致的解决方法

《Python中Windows和macOS文件路径格式不一致的解决方法》在Python中,Windows和macOS的文件路径字符串格式不一致主要体现在路径分隔符上,这种差异可能导致跨平台代码在处理文... 目录方法 1:使用 os.path 模块方法 2:使用 pathlib 模块(推荐)方法 3:统一使

一文教你解决Python不支持中文路径的问题

《一文教你解决Python不支持中文路径的问题》Python是一种广泛使用的高级编程语言,然而在处理包含中文字符的文件路径时,Python有时会表现出一些不友好的行为,下面小编就来为大家介绍一下具体的... 目录问题背景解决方案1. 设置正确的文件编码2. 使用pathlib模块3. 转换路径为Unicod

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

MySQL9.0默认路径安装下重置root密码

《MySQL9.0默认路径安装下重置root密码》本文主要介绍了MySQL9.0默认路径安装下重置root密码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录问题描述环境描述解决方法正常模式下修改密码报错原因问题描述mysqlChina编程采用默认安装路径,

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1