【目标检测】30、Rectified IoU: Single-Shot Two-Pronged Detector with Rectified IoU Loss

2023-10-20 16:50

本文主要是介绍【目标检测】30、Rectified IoU: Single-Shot Two-Pronged Detector with Rectified IoU Loss,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

文章目录

    • 一、背景
    • 二、方法
    • 三、效果

论文:Single-Shot Two-Pronged Detector with Rectified IoU Loss

代码:暂无

出处:ACM MM 2020

一、背景

在检测任务重,IoU 经常被用来选择预选框,但这种直接的做法也忽略了样本分布的不均衡的特点,这会影响定位 loss 的梯度,从而影响最终的效果。

作者思考,能不能在训练的过程中不断 rectify 所有样本的梯度,来提升效果。于是就提出了 Rectified IoU (RIoU) loss。

Rectified IoU (RIoU) loss 的目的:增大 high IoU 样本的梯度,抑制 low IoU 样本的梯度

Rectified IoU (RIoU) loss 的特点:在使用 RIoU 训练时,大量简单样本(IoU 大)的梯度会被增大,让网络更关注这些样本,而少量的难样本(IoU 小)的梯度会被抑制。这样会使得每种类型的样本的贡献更均衡,训练过程更高效和稳定。

为什么抑制难样本的梯度后,每类样本的贡献会更均衡呢?

因为 IoU 低的样本占大多数,所以对应的 loss 更大,所以作者通过提高简单样本对 loss 的贡献,来让难易样本的贡献更均衡。

二、方法

L I o U L_{IoU} LIoU 的形式如下:

L I o U = 1 − I o U L_{IoU}=1-IoU LIoU=1IoU

L I o U L_{IoU} LIoU 的偏导如下:

∣ g r a d i e n t s ( I o U ) ∣ = ∣ ∂ L I o U ∂ I o U ∣ = 1 |gradients(IoU)|=|\frac{\partial L_{IoU}}{\partial_{IoU}}|=1 gradients(IoU)=IoULIoU=1

由此可看出, ∣ g r a d i e n t s ( I o U ) ∣ |gradients(IoU)| gradients(IoU) 是一个常数,对难易样本无差别对待,但不同 IoU 样本的分布是很不均衡的。low IoU 样本的数量大于 high IoU 样本的数量,也就是说,在训练过程中,low IoU 样本掌握着梯度,让网络更偏向于难样本的回归。

Rectified IoU (RIoU) loss 的目的:增大 high IoU 样本的梯度,抑制 low IoU 样本的梯度

如何修正呢:

如果梯度总是随着 IoU 的增大而增大,则会面临一个问题,即当某个框回归的非常好时( I o U → 1 IoU \to 1 IoU1),其梯度会最大,这是不合适的。

所以作者提出了如下的方式,a, b, c, k 可以控制梯度曲线的形状。上升后,在 I o U = β IoU =\beta IoU=β 处快速下降,本文 β = 0.95 \beta=0.95 β=0.95

在这里插入图片描述

在这里插入图片描述
β = 0.95 \beta=0.95 β=0.95 时的 Loss 曲线对应如下, I o U < β IoU<\beta IoU<β 时是凸型, I o U > β IoU>\beta IoU>β 时是凹型:

在这里插入图片描述
在这里插入图片描述

三、效果

在这里插入图片描述
在这里插入图片描述

这篇关于【目标检测】30、Rectified IoU: Single-Shot Two-Pronged Detector with Rectified IoU Loss的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/248402

相关文章

shell脚本自动删除30天以前的文件(最新推荐)

《shell脚本自动删除30天以前的文件(最新推荐)》该文章介绍了如何使用Shell脚本自动删除指定目录下30天以前的文件,并通过crontab设置定时任务,此外,还提供了如何使用Shell脚本删除E... 目录shell脚本自动删除30天以前的文件linux按照日期定时删除elasticsearch索引s

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

TP-Link PDDNS服将于务6月30日正式停运:用户需转向第三方DDNS服务

《TP-LinkPDDNS服将于务6月30日正式停运:用户需转向第三方DDNS服务》近期,路由器制造巨头普联(TP-Link)在用户群体中引发了一系列重要变动,上个月,公司发出了一则通知,明确要求所... 路由器厂商普联(TP-Link)上个月发布公告要求所有用户必须完成实名认证后才能继续使用普联提供的 D

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

mysql-8.0.30压缩包版安装和配置MySQL环境过程

《mysql-8.0.30压缩包版安装和配置MySQL环境过程》该文章介绍了如何在Windows系统中下载、安装和配置MySQL数据库,包括下载地址、解压文件、创建和配置my.ini文件、设置环境变量... 目录压缩包安装配置下载配置环境变量下载和初始化总结压缩包安装配置下载下载地址:https://d

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

30常用 Maven 命令

Maven 是一个强大的项目管理和构建工具,它广泛用于 Java 项目的依赖管理、构建流程和插件集成。Maven 的命令行工具提供了大量的命令来帮助开发人员管理项目的生命周期、依赖和插件。以下是 常用 Maven 命令的使用场景及其详细解释。 1. mvn clean 使用场景:清理项目的生成目录,通常用于删除项目中自动生成的文件(如 target/ 目录)。共性规律:清理操作

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

2024网安周今日开幕,亚信安全亮相30城

2024年国家网络安全宣传周今天在广州拉开帷幕。今年网安周继续以“网络安全为人民,网络安全靠人民”为主题。2024年国家网络安全宣传周涵盖了1场开幕式、1场高峰论坛、5个重要活动、15场分论坛/座谈会/闭门会、6个主题日活动和网络安全“六进”活动。亚信安全出席2024年国家网络安全宣传周开幕式和主论坛,并将通过线下宣讲、创意科普、成果展示等多种形式,让广大民众看得懂、记得住安全知识,同时还