一道切线和圆有关的几何证明题及解析解答

2023-10-20 14:10

本文主要是介绍一道切线和圆有关的几何证明题及解析解答,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原题

已知,如图, AB  是  O  的直径, CE CF  是  O  的两条切线, D  是  AE  和  BF  的交点。

求证:  ABCD

这里写图片描述

画出来动态调整图观察,结论没有问题。只是纯几何的证明太难。

这里写图片描述

证明

解析的方法是现成的,像是中学可以理解的。 只是过程很繁琐,所以,证明一下。

不失一般性(这个说法很酷),假设问题中的圆是单位圆、以圆心为原点建立平面直角坐标系,让直径  AB 在纵坐标轴上,从而,两个点的坐标:  A(0,1),B(0,1)

这里写图片描述

假设单位圆 O  上两个切点的坐标  E(cosθ1,sinθ1),F(cosθ2,sinθ2) , 则容易知道直线:

CE 的斜率  cotθ1 CF  的斜率  cotθ2 。 两直线方程可以由点斜式改写为更一般的形式,联立如下:

{ysinθ1=(xcosθ1)cotθ1ysinθ2=(xcosθ2)cotθ2(1)

联立可以求出  C  的纵坐标: 

yC=sin(12(θ1+θ2))sec(12(θ1θ2))

进一步,通过两点式表示方法并转化,可以得到另外两条直线, AE  和  BF  的方程的一般形式,注意到  A B  的坐标都很简单,方程也不复杂:

{y+1=xsecθ1(sinθ1+1)y1=xsecθ2(sinθ21)(2)

类似解出  D  点纵坐标,发现刚好等于  C  的纵坐标。

所以,  CD  跟所建立坐标系中的纵坐标轴垂直, 也就是跟  AB  垂直。解析方法,把几何里面的直线间垂直,转化成两个二元一次线性方程组之间有一个特定解(的解析形式)恒等。

求解和化简繁琐,关键是证明两者相等即可,线性方程组的解因此无须是最简形式。上面只能用于对答案了。

纯几何的证明如果能够利用射影几何的一些定理可行性会大大增加。有些超纲,但是在数学竞赛和自主招生考试中未尝不可。


这篇关于一道切线和圆有关的几何证明题及解析解答的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/247627

相关文章

C语言中自动与强制转换全解析

《C语言中自动与强制转换全解析》在编写C程序时,类型转换是确保数据正确性和一致性的关键环节,无论是隐式转换还是显式转换,都各有特点和应用场景,本文将详细探讨C语言中的类型转换机制,帮助您更好地理解并在... 目录类型转换的重要性自动类型转换(隐式转换)强制类型转换(显式转换)常见错误与注意事项总结与建议类型

MySQL 缓存机制与架构解析(最新推荐)

《MySQL缓存机制与架构解析(最新推荐)》本文详细介绍了MySQL的缓存机制和整体架构,包括一级缓存(InnoDBBufferPool)和二级缓存(QueryCache),文章还探讨了SQL... 目录一、mysql缓存机制概述二、MySQL整体架构三、SQL查询执行全流程四、MySQL 8.0为何移除查

在Rust中要用Struct和Enum组织数据的原因解析

《在Rust中要用Struct和Enum组织数据的原因解析》在Rust中,Struct和Enum是组织数据的核心工具,Struct用于将相关字段封装为单一实体,便于管理和扩展,Enum用于明确定义所有... 目录为什么在Rust中要用Struct和Enum组织数据?一、使用struct组织数据:将相关字段绑

使用Java实现一个解析CURL脚本小工具

《使用Java实现一个解析CURL脚本小工具》文章介绍了如何使用Java实现一个解析CURL脚本的工具,该工具可以将CURL脚本中的Header解析为KVMap结构,获取URL路径、请求类型,解析UR... 目录使用示例实现原理具体实现CurlParserUtilCurlEntityICurlHandler

深入解析Spring TransactionTemplate 高级用法(示例代码)

《深入解析SpringTransactionTemplate高级用法(示例代码)》TransactionTemplate是Spring框架中一个强大的工具,它允许开发者以编程方式控制事务,通过... 目录1. TransactionTemplate 的核心概念2. 核心接口和类3. TransactionT

数据库使用之union、union all、各种join的用法区别解析

《数据库使用之union、unionall、各种join的用法区别解析》:本文主要介绍SQL中的Union和UnionAll的区别,包括去重与否以及使用时的注意事项,还详细解释了Join关键字,... 目录一、Union 和Union All1、区别:2、注意点:3、具体举例二、Join关键字的区别&php

Spring IOC控制反转的实现解析

《SpringIOC控制反转的实现解析》:本文主要介绍SpringIOC控制反转的实现,IOC是Spring的核心思想之一,它通过将对象的创建、依赖注入和生命周期管理交给容器来实现解耦,使开发者... 目录1. IOC的基本概念1.1 什么是IOC1.2 IOC与DI的关系2. IOC的设计目标3. IOC

java中的HashSet与 == 和 equals的区别示例解析

《java中的HashSet与==和equals的区别示例解析》HashSet是Java中基于哈希表实现的集合类,特点包括:元素唯一、无序和可包含null,本文给大家介绍java中的HashSe... 目录什么是HashSetHashSet 的主要特点是HashSet 的常用方法hasSet存储为啥是无序的

Linux中shell解析脚本的通配符、元字符、转义符说明

《Linux中shell解析脚本的通配符、元字符、转义符说明》:本文主要介绍shell通配符、元字符、转义符以及shell解析脚本的过程,通配符用于路径扩展,元字符用于多命令分割,转义符用于将特殊... 目录一、linux shell通配符(wildcard)二、shell元字符(特殊字符 Meta)三、s

使用Python实现批量访问URL并解析XML响应功能

《使用Python实现批量访问URL并解析XML响应功能》在现代Web开发和数据抓取中,批量访问URL并解析响应内容是一个常见的需求,本文将详细介绍如何使用Python实现批量访问URL并解析XML响... 目录引言1. 背景与需求2. 工具方法实现2.1 单URL访问与解析代码实现代码说明2.2 示例调用