【2018ccpc区域赛网络赛】【hdu6447 YJJ's Salesman】【dp+离散化+树状数组/线段树优化】

本文主要是介绍【2018ccpc区域赛网络赛】【hdu6447 YJJ's Salesman】【dp+离散化+树状数组/线段树优化】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

链接:

http://acm.hdu.edu.cn/showproblem.php?pid=6447

分析:二维坐标排序,x->大,y->小,由于我们每次走必须x,y均变大,那么相当于只要考虑排序后的y的值。从左往右考虑y,dp[i]=max(dp[j])+val[i](i表示第i个点),由于y的数据范围为1e9,需要离散化,然后用树状数组维护求最大。

代码:

#pragma warning(disable:4996)
#include<bits/stdc++.h>
using namespace std;
typedef pair<int, int> pii;
typedef pair<double, int>pdi;
typedef long long ll;
#define CLR(a,b) memset(a,b,sizeof(a))
#define _for(i, a, b) for (int i = a; i < b; ++i)
const int mod = (int)1e9 + 7;
const long double eps = 1e-10;
const int maxn = 1e5 + 7;
const int INF = 0x3f3f3f3f;struct node {ll x, y, z;
}k[maxn];ll c[maxn];ll lowbit(ll i) {return i & (-i);
}ll getsum(ll x) {ll res = 0;while (x) {res =max(res, c[x]);x -= lowbit(x);}return res;
}void add(ll x, ll v) {while (x <= 1e5) {c[x] = max(c[x], v);x += lowbit(x);}
}int main() {int t;scanf("%d", &t);while (t--) {CLR(c, 0);ll n;scanf("%lld", &n);for (int i = 1; i <= n; i++) {scanf("%lld%lld%lld", &k[i].x, &k[i].y, &k[i].z);}sort(k + 1, k + 1 + n, [](const node &l, const node &r) {return l.y < r.y;});int cnt = 1;for (int i = 1; i <= n; ++i) {if (k[i].y != k[i + 1].y)k[i].y = cnt++;elsek[i].y = cnt;}sort(k + 1, k + 1 + n, cmp);ll maxv = 0;for (int i = 1; i <= n; i++) {int tmp = getsum(k[i].y - 1) + k[i].z;//同行不能加,故要减1add(k[i].y, tmp);}printf("%lld\n", getsum(n));}
}

 

这篇关于【2018ccpc区域赛网络赛】【hdu6447 YJJ's Salesman】【dp+离散化+树状数组/线段树优化】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/244759

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

hdu2241(二分+合并数组)

题意:判断是否存在a+b+c = x,a,b,c分别属于集合A,B,C 如果用暴力会超时,所以这里用到了数组合并,将b,c数组合并成d,d数组存的是b,c数组元素的和,然后对d数组进行二分就可以了 代码如下(附注释): #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<que

hdu4826(三维DP)

这是一个百度之星的资格赛第四题 题目链接:http://acm.hdu.edu.cn/contests/contest_showproblem.php?pid=1004&cid=500 题意:从左上角的点到右上角的点,每个点只能走一遍,走的方向有三个:向上,向下,向右,求最大值。 咋一看像搜索题,先暴搜,TLE,然后剪枝,还是TLE.然后我就改方法,用DP来做,这题和普通dp相比,多个个向上

hdu1011(背包树形DP)

没有完全理解这题, m个人,攻打一个map,map的入口是1,在攻打某个结点之前要先攻打其他一个结点 dp[i][j]表示m个人攻打以第i个结点为根节点的子树得到的最优解 状态转移dp[i][ j ] = max(dp[i][j], dp[i][k]+dp[t][j-k]),其中t是i结点的子节点 代码如下: #include<iostream>#include<algorithm

poj3468(线段树成段更新模板题)

题意:包括两个操作:1、将[a.b]上的数字加上v;2、查询区间[a,b]上的和 下面的介绍是下解题思路: 首先介绍  lazy-tag思想:用一个变量记录每一个线段树节点的变化值,当这部分线段的一致性被破坏我们就将这个变化值传递给子区间,大大增加了线段树的效率。 比如现在需要对[a,b]区间值进行加c操作,那么就从根节点[1,n]开始调用update函数进行操作,如果刚好执行到一个子节点,

hdu1394(线段树点更新的应用)

题意:求一个序列经过一定的操作得到的序列的最小逆序数 这题会用到逆序数的一个性质,在0到n-1这些数字组成的乱序排列,将第一个数字A移到最后一位,得到的逆序数为res-a+(n-a-1) 知道上面的知识点后,可以用暴力来解 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#in

hdu1689(线段树成段更新)

两种操作:1、set区间[a,b]上数字为v;2、查询[ 1 , n ]上的sum 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdl

hdu4865(概率DP)

题意:已知前一天和今天的天气概率,某天的天气概率和叶子的潮湿程度的概率,n天叶子的湿度,求n天最有可能的天气情况。 思路:概率DP,dp[i][j]表示第i天天气为j的概率,状态转移如下:dp[i][j] = max(dp[i][j, dp[i-1][k]*table2[k][j]*table1[j][col] )  代码如下: #include <stdio.h>#include