E3D-LSTM

2023-10-20 01:32
文章标签 lstm e3d

本文主要是介绍E3D-LSTM,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ConvLSTM利用的是Conv2D+LSTM,E3D-LSTM提出的是采取Conv3D+LSTM的结构,处理的问题都是视频预测。

在学习E3D-LSTM文章之前,先看一下C3D,C3D其实就是利用Conv3D的一个CNN的网络架构,主要针对的也是视频的数据集,不过处理的问题是识别和分割方面的。C3D文章主要讲Conv2D在池化卷积过程中会丢失时间信息,作为视频数据集,采用Conv3D主要是将“Frame”当做一维放到了Tensor当中去做卷积。

简单来说就是[B,C,F,H,W]的数据([batch,channel,frame,height,width])对后三维做卷积,卷积核自然就变成三维的卷积核了,C3D还对不同size的卷积核做了对比试验,最后3*3*3的卷积核最优。

回到E3D-LSTM,整体大网络的框架是这样的:

Cell的结构是这样的:

这篇关于E3D-LSTM的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/243737

相关文章

自然语言处理系列六十三》神经网络算法》LSTM长短期记忆神经网络算法

注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】 文章目录 自然语言处理系列六十三神经网络算法》LSTM长短期记忆神经网络算法Seq2Seq端到端神经网络算法 总结 自然语言处理系列六十三 神经网络算法》LSTM长短期记忆神经网络算法 长短期记忆网络(LSTM,Long S

Tensorflow lstm实现的小说撰写预测

最近,在研究深度学习方面的知识,结合Tensorflow,完成了基于lstm的小说预测程序demo。 lstm是改进的RNN,具有长期记忆功能,相对于RNN,增加了多个门来控制输入与输出。原理方面的知识网上很多,在此,我只是将我短暂学习的tensorflow写一个预测小说的demo,如果有错误,还望大家指出。 1、将小说进行分词,去除空格,建立词汇表与id的字典,生成初始输入模型的x与y d

CNN-LSTM模型中应用贝叶斯推断进行时间序列预测

这篇论文的标题是《在混合CNN-LSTM模型中应用贝叶斯推断进行时间序列预测》,作者是Thi-Lich Nghiem, Viet-Duc Le, Thi-Lan Le, Pierre Maréchal, Daniel Delahaye, Andrija Vidosavljevic。论文发表在2022年10月于越南富国岛举行的国际多媒体分析与模式识别会议(MAPR)上。 摘要部分提到,卷积

回归预测 | MATLAB实现PSO-LSTM(粒子群优化长短期记忆神经网络)多输入单输出

回归预测 | MATLAB实现PSO-LSTM(粒子群优化长短期记忆神经网络)多输入单输出 目录 回归预测 | MATLAB实现PSO-LSTM(粒子群优化长短期记忆神经网络)多输入单输出预测效果基本介绍模型介绍PSO模型LSTM模型PSO-LSTM模型 程序设计参考资料致谢 预测效果 Matlab实现PSO-LSTM多变量回归预测 1.input和outpu

RNN发展(RNN/LSTM/GRU/GNMT/transformer/RWKV)

RNN到GRU参考: https://blog.csdn.net/weixin_36378508/article/details/115101779 tRANSFORMERS参考: seq2seq到attention到transformer理解 GNMT 2016年9月 谷歌,基于神经网络的翻译系统(GNMT),并宣称GNMT在多个主要语言对的翻译中将翻译误差降低了55%-85%以上, G

REMEMBERING HISTORY WITH CONVOLUTIONAL LSTM FOR ANOMALY DETECTION——利用卷积LSTM记忆历史进行异常检测

上海科技大学的文章,上海科技大学有个组一直在做这方面的工作,好文章挺多的还有数据集。 ABSTRACT 本文解决了视频中的异常检测问题,由于异常是无界的,所以异常检测是一项极具挑战性的任务。我们通过利用卷积神经网络(CNN或ConvNet)对每一帧进行外观编码,并利用卷积长期记忆(ConvLSTM)来记忆与运动信息相对应的所有过去的帧来完成这项任务。然后将ConvNet和ConvLSTM与

【深度学习】LSTM模型,GRU模型计算公式及其优缺点介绍

一.LSTM介绍 LSTM(Long Short-Term Memory)也称长短时记忆结构, 它是传统RNN的变体, 与经典RNN相比能够有效捕捉长序列之间的语义关联, 缓解梯度消失或爆炸现象. 同时LSTM的结构更复杂, 它的核心结构可以分为四个部分去解析: 遗忘门输入门细胞状态输出门  1LSTM的内部结构图  1.1 LSTM结构分析 结构解释图:   遗忘门部分结构图与计算

CNN-LSTM用于时间序列预测,发二区5分+没问题!

为了进一步提高时序预测的性能,研究者们组合了CNN和LSTM的特点,提出了CNN-LSTM混合架构。 这种架构因为独特的结构设计,能同时处理时空数据、提取丰富的特征、并有效解决过拟合问题,实现对时间序列数据的高效、准确预测,远超传统方法。 因此,它已经成为我们应对时序预测任务离不开的模型,有关CNN-LSTM的研究也成了当下热门主题之一,高质量论文频发。 为了方便大家了解CNN-LSTM的最

【ShuQiHere】从 LSTM 到 GRU:简化结构中的高效之道

【ShuQiHere】 引言 在自然语言处理中,情感分析是一项关键任务,它通过分析文本的情感倾向(如积极、消极或中立)帮助我们理解文本背后的情感💬。这种任务需要捕捉文本中前后单词之间的依赖关系,因此循环神经网络(RNN)和长短期记忆网络(LSTM)通常被用来处理🔄。然而,尽管 LSTM 在应对长期依赖问题上表现出色,其复杂的门结构也带来了计算资源的高消耗和训练时间的延长⌛。为了克服这些挑战

机器学习项目——基于机器学习(RNN LSTM 高斯拟合 MLP)的锂离子电池剩余寿命预测方法研究(代码/论文)

完整的论文代码见文章末尾 以下为核心内容和部分结果 摘要 机器学习方法在电池寿命预测中的应用主要包括监督学习、无监督学习和强化学习等。监督学习方法通过构建回归模型或分类模型,直接预测电池的剩余寿命或健康状态。无监督学习方法则通过聚类分析和降维技术,识别电池数据中的潜在模式和特征。强化学习方法通过构建动态决策模型,在电池运行过程中不断优化预测策略和调整参数。上述方法不仅可以提高预测精度,还可以在