CNN-LSTM用于时间序列预测,发二区5分+没问题!

2024-09-05 04:52

本文主要是介绍CNN-LSTM用于时间序列预测,发二区5分+没问题!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

为了进一步提高时序预测的性能,研究者们组合了CNN和LSTM的特点,提出了CNN-LSTM混合架构。

这种架构因为独特的结构设计,能同时处理时空数据、提取丰富的特征、并有效解决过拟合问题,实现对时间序列数据的高效、准确预测,远超传统方法。

因此,它已经成为我们应对时序预测任务离不开的模型,有关CNN-LSTM的研究也成了当下热门主题之一,高质量论文频发。

为了方便大家了解CNN-LSTM的最新进展与创新思路,我这边整理了8篇今年最新的相关论文,希望可以给各位的论文添砖加瓦。

论文原文合集需要的同学看文末

Harnessing a Hybrid CNN-LSTM Model for Portfolio Performance: A Case Study on Stock Selection and Optimization

方法:论文提出了一种名为CNN-LSTM+MV的金融投资决策方法。该方法通过将卷积神经网络(CNN)和长短期记忆网络(LSTM)的优势相结合,实现了对股票的选择预测和通过均值方差(MV)模型进行优化组合形成的综合框架。

创新点:

  • 引入了一种称为CNN-LSTM+MV的方法,结合了卷积神经网络(CNN)和长短期记忆网络(LSTM)的优点,用于股票选择和最优组合构建。

  • 提出了一种综合性能评估的深度学习模型,该模型在预测金融时间序列方面优于单一模型。

  • 利用MV模型和预测值实现了有利的回报、风险和风险回报指标,提高了预测准确性和组合绩效。

Analyzing Financial Market Trends in Cryptocurrency and Stock Prices Using CNN-LSTM Models

方法:论文介绍了CNN-LSTM模型的结构和功能,以及如何利用这种深度学习模型来处理时间序列数据,捕捉其中的长期依赖关系,并进行有效的价格预测。通过具体的实证分析,论证了使用深度学习模型CNN-LSTM预测比特币价格的有效性,并提出了未来研究和优化策略的方向。

创新点:

  • 引入更多的变量。研究表明,市场状况和宏观金融状况等因素也值得考虑,可以通过增加这些变量来提高预测准确性。

  • 关注特征处理和权重分配。通过有效的方法对不同数据的权重进行缩放,可以有效提高预测准确性。同时,在混合模型中,通过采用适当的权重分配,可以充分利用单个模型的优势。

Multi‑step ahead forecasting of electrical conductivity in rivers by using a hybrid Convolutional Neural Network‑Long Short‑Term Memory (CNN‑LSTM) model enhanced by Boruta‑XGBoost feature selection algorithm

方法:论文使用现代深度学习技术开发了一个基于CNN-LSTM框架的预测模型,用于预测河流中的电导率(EC)。通过与传统的机器学习方法(如多层感知器神经网络MLP、K最近邻KNN和极端梯度提升XGBoost)进行比较,展示了CNN-LSTM模型在预测澳大利亚两条河流(Albert River和Barratta Creek)的电导率方面的优越性能。

创新点:

  • 提出了一种新颖的混合Boruta-XGB-CNN-LSTM模型,用于有效预测河流的EC值。

  • 该模型在训练期间和测试期间的预测性能优于其他比较模型,具有更高的准确性和较低的误差。

  • 通过优化输入特征和利用CNN-LSTM架构,提高了水质预测模型的性能和适用性。

Deep Learning Approaches for Water Stress Forecasting in Arboriculture Using Time Series of Remote Sensing Images: Comparative Study between ConvLSTM and CNN-LSTM Models

方法:论文使用深度学习(DL)模型进行时间序列预测,特别是在作物水分胁迫预测方面。文中比较了两种深度学习模型——ConvLSTM和CNN-LSTM——在利用遥感数据进行水分胁迫预测方面的性能。

创新点:

  • 引入了ConvLSTM和CNN-LSTM两种深度学习模型,用于农作物水分胁迫的时空预测。

  • 提出了一种数据预处理的方法,将遥感图像转换为数字矩阵,并将数据集划分为训练集和测试集。

  • 对ConvLSTM和CNN-LSTM两种模型进行了详细的性能比较,发现CNN-LSTM在长序列情况下具有更高的准确性。

关注下方《学姐带你玩AI》🚀🚀🚀

回复“混合时序”获取全部论文

码字不易,欢迎大家点赞评论收藏

这篇关于CNN-LSTM用于时间序列预测,发二区5分+没问题!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1137997

相关文章

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

解决systemctl reload nginx重启Nginx服务报错:Job for nginx.service invalid问题

《解决systemctlreloadnginx重启Nginx服务报错:Jobfornginx.serviceinvalid问题》文章描述了通过`systemctlstatusnginx.se... 目录systemctl reload nginx重启Nginx服务报错:Job for nginx.javas

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

vue解决子组件样式覆盖问题scoped deep

《vue解决子组件样式覆盖问题scopeddeep》文章主要介绍了在Vue项目中处理全局样式和局部样式的方法,包括使用scoped属性和深度选择器(/deep/)来覆盖子组件的样式,作者建议所有组件... 目录前言scoped分析deep分析使用总结所有组件必须加scoped父组件覆盖子组件使用deep前言

解决Cron定时任务中Pytest脚本无法发送邮件的问题

《解决Cron定时任务中Pytest脚本无法发送邮件的问题》文章探讨解决在Cron定时任务中运行Pytest脚本时邮件发送失败的问题,先优化环境变量,再检查Pytest邮件配置,接着配置文件确保SMT... 目录引言1. 环境变量优化:确保Cron任务可以正确执行解决方案:1.1. 创建一个脚本1.2. 修

Python 标准库time时间的访问和转换问题小结

《Python标准库time时间的访问和转换问题小结》time模块为Python提供了处理时间和日期的多种功能,适用于多种与时间相关的场景,包括获取当前时间、格式化时间、暂停程序执行、计算程序运行时... 目录模块介绍使用场景主要类主要函数 - time()- sleep()- localtime()- g