机器学习项目——基于机器学习(RNN LSTM 高斯拟合 MLP)的锂离子电池剩余寿命预测方法研究(代码/论文)

本文主要是介绍机器学习项目——基于机器学习(RNN LSTM 高斯拟合 MLP)的锂离子电池剩余寿命预测方法研究(代码/论文),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

完整的论文代码见文章末尾 以下为核心内容和部分结果

摘要

机器学习方法在电池寿命预测中的应用主要包括监督学习、无监督学习和强化学习等。监督学习方法通过构建回归模型或分类模型,直接预测电池的剩余寿命或健康状态。无监督学习方法则通过聚类分析和降维技术,识别电池数据中的潜在模式和特征。强化学习方法通过构建动态决策模型,在电池运行过程中不断优化预测策略和调整参数。上述方法不仅可以提高预测精度,还可以在一定程度上降低对电池内部复杂机制的依赖。

近年来,研究人员在基于机器学习的锂离子电池剩余寿命预测方面取得了许多重要进展。例如,利用长短期记忆网络(LSTM)、支持向量机(SVM)和随机森林(RF)等模型对电池寿命进行预测,取得了较好的效果。这些方法不仅能够捕捉电池运行过程中的复杂动态特性,还能够处理大规模、高维度的数据。然而,如何进一步提高预测精度、降低计算复杂度以及实现模型的实时更新仍然是当前研究中的重要课题。

基于以上背景,本研究旨在综合利用机器学习技术,构建高效的锂离子电池剩余寿命预测模型。通过深入分析不同机器学习算法的特点和适用性,探索数据预处理、特征选择和模型优化等关键技术,最终实现锂离子电池剩余寿命的精确预测和有效管理。

训练过程

数据集

CALCE(Center for Advanced Life Cycle Engineering)电池团队的数据集提供了关于锂离子电池的广泛实验数据,包括连续完全和部分循环、存储、动态驾驶剖面、开路电压(OCV)测量以及阻抗测量。测试的电池具有不同的形态因子(圆柱形、袋式和棱柱形)和化学组成(LCO、LFP和NMC)。

数据集地址如下:

https://calce.umd.edu/battery-data

RNN模型(循环神经网络)

RNN模型在时间序列数据中表现出色,适合处理锂离子电池的周期性充放电数据。

它能够捕捉到数据中的时间依赖关系,比如电池充电、放电过程中特定模式的变化,这对于准确预测电池剩余寿命至关重要。

RNN通过记忆先前时间步的信息,可以在预测过程中考虑到长期依赖,这是传统的前馈神经网络(如MLP)所不具备的优势。

MLP模型(多层感知器)

MLP模型在非时间序列数据上表现良好,可以用于处理电池的静态特征数据,如电池的物理结构、化学成分等。

它通过多层次的非线性变换,能够学习到复杂的特征关系,从而提高对电池寿命的预测精度。

当结合静态特征与动态时间序列数据时,MLP能够在一定程度上弥补RNN在静态特征上的不足。

高斯拟合

高斯过程在机器学习中常用于建模输入和输出之间的复杂关系,特别是当输入数据的分布未知或复杂时。

在锂离子电池剩余寿命预测中,高斯过程可以用来建立输入特征与电池寿命之间的概率模型。

它能够提供对预测结果的不确定性估计,这对于决策制定者来说是一种有价值的信息,尤其是在实时环境监测和预警系统中。

部分代码展示

class Net(nn.Module):def __init__(self, feature_size=8, hidden_size=[16, 8]):super(Net, self).__init__()self.feature_size, self.hidden_size = feature_size, hidden_sizeself.layer0 = nn.Linear(self.feature_size, self.hidden_size[0])self.layers = [nn.Sequential(nn.Linear(self.hidden_size[i], self.hidden_size[i+1]), nn.ReLU()) for i in range(len(self.hidden_size) - 1)]self.linear = nn.Linear(self.hidden_size[-1], 1)def forward(self, x):out = self.layer0(x)for layer in self.layers:out = layer(out)out = self.linear(out) return out
def tain(LR=0.01, feature_size=8, hidden_size=[16,8], weight_decay=0.0, window_size=8, EPOCH=1000, seed=0):mae_list, rmse_list, re_list = [], [], []result_list = []for i in range(4):name = Battery_list[i]train_x, train_y, train_data, test_data = get_train_test(Battery, name, window_size)train_size = len(train_x)print('sample size: {}'.format(train_size))setup_seed(seed)model = Net(feature_size=feature_size, hidden_size=hidden_size)model = model.to(device)optimizer = torch.optim.Adam(model.parameters(), lr=LR, weight_decay=weight_decay)criterion = nn.MSELoss()test_x = train_data.copy()loss_list, y_ = [0], []for epoch in range(EPOCH):X = np.reshape(train_x/Rated_Capacity, (-1, feature_size)).astype(np.float32)y = np.reshape(train_y[:,-1]/Rated_Capacity,(-1,1)).astype(np.float32)X, y = torch.from_numpy(X).to(device), torch.from_numpy(y).to(device)output= model(X)loss = criterion(output, y)optimizer.zero_grad()              # clear gradients for this training steploss.backward()                    # backpropagation, compute gradientsoptimizer.step()                   # apply gradientsif (epoch + 1)%100 == 0:test_x = train_data.copy() #每100次重新预测一次point_list = []while (len(test_x) - len(train_data)) < len(test_data):x = np.reshape(np.array(test_x[-feature_size:])/Rated_Capacity, (-1, feature_size)).astype(np.float32)x = torch.from_numpy(x).to(device)pred = model(x) # 测试集 模型预测#pred shape为(batch_size=1, feature_size=1)next_point = pred.data.numpy()[0,0] * Rated_Capacitytest_x.append(next_point)#测试值加入原来序列用来继续预测下一个点point_list.append(next_point)#保存输出序列最后一个点的预测值y_.append(point_list)#保存本次预测所有的预测值loss_list.append(loss)mae, rmse = evaluation(y_test=test_data, y_predict=y_[-1])re = relative_error(y_test=test_data, y_predict=y_[-1], threshold=Rated_Capacity*0.7)print('epoch:{:<2d} | loss:{:<6.4f} | MAE:{:<6.4f} | RMSE:{:<6.4f} | RE:{:<6.4f}'.format(epoch, loss, mae, rmse, re))if (len(loss_list) > 1) and (abs(loss_list[-2] - loss_list[-1]) < 1e-6):breakmae, rmse = evaluation(y_test=test_data, y_predict=y_[-1])re = relative_error(y_test=test_data, y_predict=y_[-1], threshold=Rated_Capacity*0.7)mae_list.append(mae)rmse_list.append(rmse)re_list.append(re)result_list.append(y_[-1])return re_list, mae_list, rmse_list, result_list

在这里插入图片描述

部分结果展示

在这里插入图片描述

预测数据(青色虚线)与测试数据(蓝色实线)高度吻合,说明模型能够较准确地预测电池容量的衰减。在大多数放电周期范围内,预测值与实际值基本重合,特别是在前600个放电周期内,预测效果较好。在800个放电周期之后,虽然有一些偏差,但总体趋势仍然一致。

论文 代码 获取方式

点这里 只需要一点点辛苦费,不需要你跑模型,都是ipynb文件。

在这里插入图片描述

这篇关于机器学习项目——基于机器学习(RNN LSTM 高斯拟合 MLP)的锂离子电池剩余寿命预测方法研究(代码/论文)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1134367

相关文章

macOS无效Launchpad图标轻松删除的4 种实用方法

《macOS无效Launchpad图标轻松删除的4种实用方法》mac中不在appstore上下载的应用经常在删除后它的图标还残留在launchpad中,并且长按图标也不会出现删除符号,下面解决这个问... 在 MACOS 上,Launchpad(也就是「启动台」)是一个便捷的 App 启动工具。但有时候,应

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

一文教你如何将maven项目转成web项目

《一文教你如何将maven项目转成web项目》在软件开发过程中,有时我们需要将一个普通的Maven项目转换为Web项目,以便能够部署到Web容器中运行,本文将详细介绍如何通过简单的步骤完成这一转换过程... 目录准备工作步骤一:修改​​pom.XML​​1.1 添加​​packaging​​标签1.2 添加

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

mysql出现ERROR 2003 (HY000): Can‘t connect to MySQL server on ‘localhost‘ (10061)的解决方法

《mysql出现ERROR2003(HY000):Can‘tconnecttoMySQLserveron‘localhost‘(10061)的解决方法》本文主要介绍了mysql出现... 目录前言:第一步:第二步:第三步:总结:前言:当你想通过命令窗口想打开mysql时候发现提http://www.cpp

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

tomcat多实例部署的项目实践

《tomcat多实例部署的项目实践》Tomcat多实例是指在一台设备上运行多个Tomcat服务,这些Tomcat相互独立,本文主要介绍了tomcat多实例部署的项目实践,具有一定的参考价值,感兴趣的可... 目录1.创建项目目录,测试文China编程件2js.创建实例的安装目录3.准备实例的配置文件4.编辑实例的