机器学习项目——基于机器学习(RNN LSTM 高斯拟合 MLP)的锂离子电池剩余寿命预测方法研究(代码/论文)

本文主要是介绍机器学习项目——基于机器学习(RNN LSTM 高斯拟合 MLP)的锂离子电池剩余寿命预测方法研究(代码/论文),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

完整的论文代码见文章末尾 以下为核心内容和部分结果

摘要

机器学习方法在电池寿命预测中的应用主要包括监督学习、无监督学习和强化学习等。监督学习方法通过构建回归模型或分类模型,直接预测电池的剩余寿命或健康状态。无监督学习方法则通过聚类分析和降维技术,识别电池数据中的潜在模式和特征。强化学习方法通过构建动态决策模型,在电池运行过程中不断优化预测策略和调整参数。上述方法不仅可以提高预测精度,还可以在一定程度上降低对电池内部复杂机制的依赖。

近年来,研究人员在基于机器学习的锂离子电池剩余寿命预测方面取得了许多重要进展。例如,利用长短期记忆网络(LSTM)、支持向量机(SVM)和随机森林(RF)等模型对电池寿命进行预测,取得了较好的效果。这些方法不仅能够捕捉电池运行过程中的复杂动态特性,还能够处理大规模、高维度的数据。然而,如何进一步提高预测精度、降低计算复杂度以及实现模型的实时更新仍然是当前研究中的重要课题。

基于以上背景,本研究旨在综合利用机器学习技术,构建高效的锂离子电池剩余寿命预测模型。通过深入分析不同机器学习算法的特点和适用性,探索数据预处理、特征选择和模型优化等关键技术,最终实现锂离子电池剩余寿命的精确预测和有效管理。

训练过程

数据集

CALCE(Center for Advanced Life Cycle Engineering)电池团队的数据集提供了关于锂离子电池的广泛实验数据,包括连续完全和部分循环、存储、动态驾驶剖面、开路电压(OCV)测量以及阻抗测量。测试的电池具有不同的形态因子(圆柱形、袋式和棱柱形)和化学组成(LCO、LFP和NMC)。

数据集地址如下:

https://calce.umd.edu/battery-data

RNN模型(循环神经网络)

RNN模型在时间序列数据中表现出色,适合处理锂离子电池的周期性充放电数据。

它能够捕捉到数据中的时间依赖关系,比如电池充电、放电过程中特定模式的变化,这对于准确预测电池剩余寿命至关重要。

RNN通过记忆先前时间步的信息,可以在预测过程中考虑到长期依赖,这是传统的前馈神经网络(如MLP)所不具备的优势。

MLP模型(多层感知器)

MLP模型在非时间序列数据上表现良好,可以用于处理电池的静态特征数据,如电池的物理结构、化学成分等。

它通过多层次的非线性变换,能够学习到复杂的特征关系,从而提高对电池寿命的预测精度。

当结合静态特征与动态时间序列数据时,MLP能够在一定程度上弥补RNN在静态特征上的不足。

高斯拟合

高斯过程在机器学习中常用于建模输入和输出之间的复杂关系,特别是当输入数据的分布未知或复杂时。

在锂离子电池剩余寿命预测中,高斯过程可以用来建立输入特征与电池寿命之间的概率模型。

它能够提供对预测结果的不确定性估计,这对于决策制定者来说是一种有价值的信息,尤其是在实时环境监测和预警系统中。

部分代码展示

class Net(nn.Module):def __init__(self, feature_size=8, hidden_size=[16, 8]):super(Net, self).__init__()self.feature_size, self.hidden_size = feature_size, hidden_sizeself.layer0 = nn.Linear(self.feature_size, self.hidden_size[0])self.layers = [nn.Sequential(nn.Linear(self.hidden_size[i], self.hidden_size[i+1]), nn.ReLU()) for i in range(len(self.hidden_size) - 1)]self.linear = nn.Linear(self.hidden_size[-1], 1)def forward(self, x):out = self.layer0(x)for layer in self.layers:out = layer(out)out = self.linear(out) return out
def tain(LR=0.01, feature_size=8, hidden_size=[16,8], weight_decay=0.0, window_size=8, EPOCH=1000, seed=0):mae_list, rmse_list, re_list = [], [], []result_list = []for i in range(4):name = Battery_list[i]train_x, train_y, train_data, test_data = get_train_test(Battery, name, window_size)train_size = len(train_x)print('sample size: {}'.format(train_size))setup_seed(seed)model = Net(feature_size=feature_size, hidden_size=hidden_size)model = model.to(device)optimizer = torch.optim.Adam(model.parameters(), lr=LR, weight_decay=weight_decay)criterion = nn.MSELoss()test_x = train_data.copy()loss_list, y_ = [0], []for epoch in range(EPOCH):X = np.reshape(train_x/Rated_Capacity, (-1, feature_size)).astype(np.float32)y = np.reshape(train_y[:,-1]/Rated_Capacity,(-1,1)).astype(np.float32)X, y = torch.from_numpy(X).to(device), torch.from_numpy(y).to(device)output= model(X)loss = criterion(output, y)optimizer.zero_grad()              # clear gradients for this training steploss.backward()                    # backpropagation, compute gradientsoptimizer.step()                   # apply gradientsif (epoch + 1)%100 == 0:test_x = train_data.copy() #每100次重新预测一次point_list = []while (len(test_x) - len(train_data)) < len(test_data):x = np.reshape(np.array(test_x[-feature_size:])/Rated_Capacity, (-1, feature_size)).astype(np.float32)x = torch.from_numpy(x).to(device)pred = model(x) # 测试集 模型预测#pred shape为(batch_size=1, feature_size=1)next_point = pred.data.numpy()[0,0] * Rated_Capacitytest_x.append(next_point)#测试值加入原来序列用来继续预测下一个点point_list.append(next_point)#保存输出序列最后一个点的预测值y_.append(point_list)#保存本次预测所有的预测值loss_list.append(loss)mae, rmse = evaluation(y_test=test_data, y_predict=y_[-1])re = relative_error(y_test=test_data, y_predict=y_[-1], threshold=Rated_Capacity*0.7)print('epoch:{:<2d} | loss:{:<6.4f} | MAE:{:<6.4f} | RMSE:{:<6.4f} | RE:{:<6.4f}'.format(epoch, loss, mae, rmse, re))if (len(loss_list) > 1) and (abs(loss_list[-2] - loss_list[-1]) < 1e-6):breakmae, rmse = evaluation(y_test=test_data, y_predict=y_[-1])re = relative_error(y_test=test_data, y_predict=y_[-1], threshold=Rated_Capacity*0.7)mae_list.append(mae)rmse_list.append(rmse)re_list.append(re)result_list.append(y_[-1])return re_list, mae_list, rmse_list, result_list

在这里插入图片描述

部分结果展示

在这里插入图片描述

预测数据(青色虚线)与测试数据(蓝色实线)高度吻合,说明模型能够较准确地预测电池容量的衰减。在大多数放电周期范围内,预测值与实际值基本重合,特别是在前600个放电周期内,预测效果较好。在800个放电周期之后,虽然有一些偏差,但总体趋势仍然一致。

论文 代码 获取方式

点这里 只需要一点点辛苦费,不需要你跑模型,都是ipynb文件。

在这里插入图片描述

这篇关于机器学习项目——基于机器学习(RNN LSTM 高斯拟合 MLP)的锂离子电池剩余寿命预测方法研究(代码/论文)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1134367

相关文章

Java中读取YAML文件配置信息常见问题及解决方法

《Java中读取YAML文件配置信息常见问题及解决方法》:本文主要介绍Java中读取YAML文件配置信息常见问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录1 使用Spring Boot的@ConfigurationProperties2. 使用@Valu

Java 方法重载Overload常见误区及注意事项

《Java方法重载Overload常见误区及注意事项》Java方法重载允许同一类中同名方法通过参数类型、数量、顺序差异实现功能扩展,提升代码灵活性,核心条件为参数列表不同,不涉及返回类型、访问修饰符... 目录Java 方法重载(Overload)详解一、方法重载的核心条件二、构成方法重载的具体情况三、不构

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

在Linux中改变echo输出颜色的实现方法

《在Linux中改变echo输出颜色的实现方法》在Linux系统的命令行环境下,为了使输出信息更加清晰、突出,便于用户快速识别和区分不同类型的信息,常常需要改变echo命令的输出颜色,所以本文给大家介... 目python录在linux中改变echo输出颜色的方法技术背景实现步骤使用ANSI转义码使用tpu

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Spring Boot中WebSocket常用使用方法详解

《SpringBoot中WebSocket常用使用方法详解》本文从WebSocket的基础概念出发,详细介绍了SpringBoot集成WebSocket的步骤,并重点讲解了常用的使用方法,包括简单消... 目录一、WebSocket基础概念1.1 什么是WebSocket1.2 WebSocket与HTTP

SQL Server配置管理器无法打开的四种解决方法

《SQLServer配置管理器无法打开的四种解决方法》本文总结了SQLServer配置管理器无法打开的四种解决方法,文中通过图文示例介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录方法一:桌面图标进入方法二:运行窗口进入检查版本号对照表php方法三:查找文件路径方法四:检查 S