机器学习项目——基于机器学习(RNN LSTM 高斯拟合 MLP)的锂离子电池剩余寿命预测方法研究(代码/论文)

本文主要是介绍机器学习项目——基于机器学习(RNN LSTM 高斯拟合 MLP)的锂离子电池剩余寿命预测方法研究(代码/论文),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

完整的论文代码见文章末尾 以下为核心内容和部分结果

摘要

机器学习方法在电池寿命预测中的应用主要包括监督学习、无监督学习和强化学习等。监督学习方法通过构建回归模型或分类模型,直接预测电池的剩余寿命或健康状态。无监督学习方法则通过聚类分析和降维技术,识别电池数据中的潜在模式和特征。强化学习方法通过构建动态决策模型,在电池运行过程中不断优化预测策略和调整参数。上述方法不仅可以提高预测精度,还可以在一定程度上降低对电池内部复杂机制的依赖。

近年来,研究人员在基于机器学习的锂离子电池剩余寿命预测方面取得了许多重要进展。例如,利用长短期记忆网络(LSTM)、支持向量机(SVM)和随机森林(RF)等模型对电池寿命进行预测,取得了较好的效果。这些方法不仅能够捕捉电池运行过程中的复杂动态特性,还能够处理大规模、高维度的数据。然而,如何进一步提高预测精度、降低计算复杂度以及实现模型的实时更新仍然是当前研究中的重要课题。

基于以上背景,本研究旨在综合利用机器学习技术,构建高效的锂离子电池剩余寿命预测模型。通过深入分析不同机器学习算法的特点和适用性,探索数据预处理、特征选择和模型优化等关键技术,最终实现锂离子电池剩余寿命的精确预测和有效管理。

训练过程

数据集

CALCE(Center for Advanced Life Cycle Engineering)电池团队的数据集提供了关于锂离子电池的广泛实验数据,包括连续完全和部分循环、存储、动态驾驶剖面、开路电压(OCV)测量以及阻抗测量。测试的电池具有不同的形态因子(圆柱形、袋式和棱柱形)和化学组成(LCO、LFP和NMC)。

数据集地址如下:

https://calce.umd.edu/battery-data

RNN模型(循环神经网络)

RNN模型在时间序列数据中表现出色,适合处理锂离子电池的周期性充放电数据。

它能够捕捉到数据中的时间依赖关系,比如电池充电、放电过程中特定模式的变化,这对于准确预测电池剩余寿命至关重要。

RNN通过记忆先前时间步的信息,可以在预测过程中考虑到长期依赖,这是传统的前馈神经网络(如MLP)所不具备的优势。

MLP模型(多层感知器)

MLP模型在非时间序列数据上表现良好,可以用于处理电池的静态特征数据,如电池的物理结构、化学成分等。

它通过多层次的非线性变换,能够学习到复杂的特征关系,从而提高对电池寿命的预测精度。

当结合静态特征与动态时间序列数据时,MLP能够在一定程度上弥补RNN在静态特征上的不足。

高斯拟合

高斯过程在机器学习中常用于建模输入和输出之间的复杂关系,特别是当输入数据的分布未知或复杂时。

在锂离子电池剩余寿命预测中,高斯过程可以用来建立输入特征与电池寿命之间的概率模型。

它能够提供对预测结果的不确定性估计,这对于决策制定者来说是一种有价值的信息,尤其是在实时环境监测和预警系统中。

部分代码展示

class Net(nn.Module):def __init__(self, feature_size=8, hidden_size=[16, 8]):super(Net, self).__init__()self.feature_size, self.hidden_size = feature_size, hidden_sizeself.layer0 = nn.Linear(self.feature_size, self.hidden_size[0])self.layers = [nn.Sequential(nn.Linear(self.hidden_size[i], self.hidden_size[i+1]), nn.ReLU()) for i in range(len(self.hidden_size) - 1)]self.linear = nn.Linear(self.hidden_size[-1], 1)def forward(self, x):out = self.layer0(x)for layer in self.layers:out = layer(out)out = self.linear(out) return out
def tain(LR=0.01, feature_size=8, hidden_size=[16,8], weight_decay=0.0, window_size=8, EPOCH=1000, seed=0):mae_list, rmse_list, re_list = [], [], []result_list = []for i in range(4):name = Battery_list[i]train_x, train_y, train_data, test_data = get_train_test(Battery, name, window_size)train_size = len(train_x)print('sample size: {}'.format(train_size))setup_seed(seed)model = Net(feature_size=feature_size, hidden_size=hidden_size)model = model.to(device)optimizer = torch.optim.Adam(model.parameters(), lr=LR, weight_decay=weight_decay)criterion = nn.MSELoss()test_x = train_data.copy()loss_list, y_ = [0], []for epoch in range(EPOCH):X = np.reshape(train_x/Rated_Capacity, (-1, feature_size)).astype(np.float32)y = np.reshape(train_y[:,-1]/Rated_Capacity,(-1,1)).astype(np.float32)X, y = torch.from_numpy(X).to(device), torch.from_numpy(y).to(device)output= model(X)loss = criterion(output, y)optimizer.zero_grad()              # clear gradients for this training steploss.backward()                    # backpropagation, compute gradientsoptimizer.step()                   # apply gradientsif (epoch + 1)%100 == 0:test_x = train_data.copy() #每100次重新预测一次point_list = []while (len(test_x) - len(train_data)) < len(test_data):x = np.reshape(np.array(test_x[-feature_size:])/Rated_Capacity, (-1, feature_size)).astype(np.float32)x = torch.from_numpy(x).to(device)pred = model(x) # 测试集 模型预测#pred shape为(batch_size=1, feature_size=1)next_point = pred.data.numpy()[0,0] * Rated_Capacitytest_x.append(next_point)#测试值加入原来序列用来继续预测下一个点point_list.append(next_point)#保存输出序列最后一个点的预测值y_.append(point_list)#保存本次预测所有的预测值loss_list.append(loss)mae, rmse = evaluation(y_test=test_data, y_predict=y_[-1])re = relative_error(y_test=test_data, y_predict=y_[-1], threshold=Rated_Capacity*0.7)print('epoch:{:<2d} | loss:{:<6.4f} | MAE:{:<6.4f} | RMSE:{:<6.4f} | RE:{:<6.4f}'.format(epoch, loss, mae, rmse, re))if (len(loss_list) > 1) and (abs(loss_list[-2] - loss_list[-1]) < 1e-6):breakmae, rmse = evaluation(y_test=test_data, y_predict=y_[-1])re = relative_error(y_test=test_data, y_predict=y_[-1], threshold=Rated_Capacity*0.7)mae_list.append(mae)rmse_list.append(rmse)re_list.append(re)result_list.append(y_[-1])return re_list, mae_list, rmse_list, result_list

在这里插入图片描述

部分结果展示

在这里插入图片描述

预测数据(青色虚线)与测试数据(蓝色实线)高度吻合,说明模型能够较准确地预测电池容量的衰减。在大多数放电周期范围内,预测值与实际值基本重合,特别是在前600个放电周期内,预测效果较好。在800个放电周期之后,虽然有一些偏差,但总体趋势仍然一致。

论文 代码 获取方式

点这里 只需要一点点辛苦费,不需要你跑模型,都是ipynb文件。

在这里插入图片描述

这篇关于机器学习项目——基于机器学习(RNN LSTM 高斯拟合 MLP)的锂离子电池剩余寿命预测方法研究(代码/论文)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1134367

相关文章

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

Java中Switch Case多个条件处理方法举例

《Java中SwitchCase多个条件处理方法举例》Java中switch语句用于根据变量值执行不同代码块,适用于多个条件的处理,:本文主要介绍Java中SwitchCase多个条件处理的相... 目录前言基本语法处理多个条件示例1:合并相同代码的多个case示例2:通过字符串合并多个case进阶用法使用

springboot项目如何开启https服务

《springboot项目如何开启https服务》:本文主要介绍springboot项目如何开启https服务方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录springboot项目开启https服务1. 生成SSL证书密钥库使用keytool生成自签名证书将

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

html5的响应式布局的方法示例详解

《html5的响应式布局的方法示例详解》:本文主要介绍了HTML5中使用媒体查询和Flexbox进行响应式布局的方法,简要介绍了CSSGrid布局的基础知识和如何实现自动换行的网格布局,详细内容请阅读本文,希望能对你有所帮助... 一 使用媒体查询响应式布局        使用的参数@media这是常用的

Spring 基于XML配置 bean管理 Bean-IOC的方法

《Spring基于XML配置bean管理Bean-IOC的方法》:本文主要介绍Spring基于XML配置bean管理Bean-IOC的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一... 目录一. spring学习的核心内容二. 基于 XML 配置 bean1. 通过类型来获取 bean2. 通过

将Java项目提交到云服务器的流程步骤

《将Java项目提交到云服务器的流程步骤》所谓将项目提交到云服务器即将你的项目打成一个jar包然后提交到云服务器即可,因此我们需要准备服务器环境为:Linux+JDK+MariDB(MySQL)+Gi... 目录1. 安装 jdk1.1 查看 jdk 版本1.2 下载 jdk2. 安装 mariadb(my

基于Python实现读取嵌套压缩包下文件的方法

《基于Python实现读取嵌套压缩包下文件的方法》工作中遇到的问题,需要用Python实现嵌套压缩包下文件读取,本文给大家介绍了详细的解决方法,并有相关的代码示例供大家参考,需要的朋友可以参考下... 目录思路完整代码代码优化思路打开外层zip压缩包并遍历文件:使用with zipfile.ZipFil

Python处理函数调用超时的四种方法

《Python处理函数调用超时的四种方法》在实际开发过程中,我们可能会遇到一些场景,需要对函数的执行时间进行限制,例如,当一个函数执行时间过长时,可能会导致程序卡顿、资源占用过高,因此,在某些情况下,... 目录前言func-timeout1. 安装 func-timeout2. 基本用法自定义进程subp