【天池比赛】数智重庆.全球产业赋能创新大赛【赛场一】物体检测

本文主要是介绍【天池比赛】数智重庆.全球产业赋能创新大赛【赛场一】物体检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Update List

2020/1/1 : Code Link:

本次开源,是帮助小白,有什么问题,欢迎留言,有什么建议,也欢迎留言


本次比赛,大多数同学都是使用mmdetection,使用mmdetection第一步就是应该了解config文件.
由于大部分代码来源mmdet,所以暂时只上传config。

cascade_rcnn_r50_fpn_1x.py

# fp16 settings
fp16 = dict(loss_scale=512.)
# model settings
model = dict(type='CascadeRCNN',num_stages=3,pretrained='torchvision://resnet50',backbone=dict(type='ResNet',depth=50,num_stages=4,out_indices=(0, 1, 2, 3),frozen_stages=1,style='pytorch',#dcn=dict( #在最后三个block加入可变形卷积 #   modulated=False, deformable_groups=1, fallback_on_stride=False),#  stage_with_dcn=(False, True, True, True)),neck=dict(type='FPN',in_channels=[256, 512, 1024, 2048],out_channels=256,num_outs=5),rpn_head=dict(type='RPNHead',in_channels=256,feat_channels=256,anchor_scales=[8],anchor_ratios=[0.2, 0.5, 1.0, 2.0, 5.0], # 添加了0.2,5anchor_strides=[4, 8, 16, 32, 64],target_means=[.0, .0, .0, .0],target_stds=[1.0, 1.0, 1.0, 1.0],loss_cls=dict(type='FocalLoss', use_sigmoid=True, loss_weight=1.0), # 修改了loss,为了调控难易样本与正负样本比例loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),bbox_roi_extractor=dict(type='SingleRoIExtractor',roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2),out_channels=256,featmap_strides=[4, 8, 16, 32]),bbox_head=[dict(type='SharedFCBBoxHead',num_fcs=2,in_channels=256,fc_out_channels=1024,roi_feat_size=7,num_classes=11,target_means=[0., 0., 0., 0.],target_stds=[0.1, 0.1, 0.2, 0.2],reg_class_agnostic=True,loss_cls=dict(type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)),dict(type='SharedFCBBoxHead',num_fcs=2,in_channels=256,fc_out_channels=1024,roi_feat_size=7,num_classes=11,target_means=[0., 0., 0., 0.],target_stds=[0.05, 0.05, 0.1, 0.1],reg_class_agnostic=True,loss_cls=dict(type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)),dict(type='SharedFCBBoxHead',num_fcs=2,in_channels=256,fc_out_channels=1024,roi_feat_size=7,num_classes=11,target_means=[0., 0., 0., 0.],target_stds=[0.033, 0.033, 0.067, 0.067],reg_class_agnostic=True,loss_cls=dict(type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))])
# model training and testing settings
train_cfg = dict(rpn=dict(assigner=dict(type='MaxIoUAssigner',pos_iou_thr=0.7,neg_iou_thr=0.3,min_pos_iou=0.3,ignore_iof_thr=-1),sampler=dict(type='RandomSampler', num=256,pos_fraction=0.5,neg_pos_ub=-1,add_gt_as_proposals=False),allowed_border=0,pos_weight=-1,debug=False),rpn_proposal=dict(nms_across_levels=False,nms_pre=2000,nms_post=2000,max_num=2000,nms_thr=0.7,min_bbox_size=0),rcnn=[dict(assigner=dict(type='MaxIoUAssigner',pos_iou_thr=0.4, # 更换neg_iou_thr=0.4,min_pos_iou=0.4,ignore_iof_thr=-1),sampler=dict(type='OHEMSampler',num=512,pos_fraction=0.25,neg_pos_ub=-1,add_gt_as_proposals=True),pos_weight=-1,debug=False),dict(assigner=dict(type='MaxIoUAssigner',pos_iou_thr=0.5,neg_iou_thr=0.5,min_pos_iou=0.5,ignore_iof_thr=-1),sampler=dict(type='OHEMSampler', # 解决难易样本,也解决了正负样本比例问题。num=512,pos_fraction=0.25,neg_pos_ub=-1,add_gt_as_proposals=True),pos_weight=-1,debug=False),dict(assigner=dict(type='MaxIoUAssigner',pos_iou_thr=0.6,neg_iou_thr=0.6,min_pos_iou=0.6,ignore_iof_thr=-1),sampler=dict(type='OHEMSampler',num=512,pos_fraction=0.25,neg_pos_ub=-1,add_gt_as_proposals=True),pos_weight=-1,debug=False)],stage_loss_weights=[1, 0.5, 0.25])
test_cfg = dict(rpn=dict(nms_across_levels=False,nms_pre=1000,nms_post=1000,max_num=1000,nms_thr=0.7,min_bbox_size=0),rcnn=dict(score_thr=0.05, nms=dict(type='nms', iou_thr=0.5), max_per_img=20)) # 这里可以换为sof_tnms
# dataset settings
dataset_type = 'CocoDataset'
data_root = '../../data/chongqing1_round1_train1_20191223/'
img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [dict(type='LoadImageFromFile'),dict(type='LoadAnnotations', with_bbox=True),dict(type='Resize', img_scale=(492,658), keep_ratio=True), #这里可以更换多尺度[(),()]dict(type='RandomFlip', flip_ratio=0.5),dict(type='Normalize', **img_norm_cfg),dict(type='Pad', size_divisor=32),dict(type='DefaultFormatBundle'),dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
test_pipeline = [dict(type='LoadImageFromFile'),dict(type='MultiScaleFlipAug',img_scale=(492,658),flip=False,transforms=[dict(type='Resize', keep_ratio=True),dict(type='RandomFlip'),dict(type='Normalize', **img_norm_cfg),dict(type='Pad', size_divisor=32),dict(type='ImageToTensor', keys=['img']),dict(type='Collect', keys=['img']),])
]
data = dict(imgs_per_gpu=8, # 有的同学不知道batchsize在哪修改,其实就是修改这里,每个gpu同时处理的images数目。workers_per_gpu=2,train=dict(type=dataset_type,ann_file=data_root + 'fixed_annotations.json', # 更换自己的json文件img_prefix=data_root + 'images/', # images目录pipeline=train_pipeline),val=dict(type=dataset_type,ann_file=data_root + 'fixed_annotations.json',img_prefix=data_root + 'images/',pipeline=test_pipeline),test=dict(type=dataset_type,ann_file=data_root + 'fixed_annotations.json',img_prefix=data_root + 'images/',pipeline=test_pipeline))
# optimizer
optimizer = dict(type='SGD', lr=0.001, momentum=0.9, weight_decay=0.0001) # lr = 0.00125*batch_size,不能过大,否则梯度爆炸。
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
# learning policy
lr_config = dict(policy='step',warmup='linear',warmup_iters=500,warmup_ratio=1.0 / 3,step=[6, 12, 19])
checkpoint_config = dict(interval=1)
# yapf:disable
log_config = dict(interval=64,hooks=[dict(type='TextLoggerHook'), # 控制台输出信息的风格# dict(type='TensorboardLoggerHook') # 需要安装tensorflow and tensorboard才可以使用])
# yapf:enable
# runtime settings
total_epochs = 20
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = '../work_dirs/cascade_rcnn_r50_fpn_1x' # 日志目录
load_from = '../work_dirs/cascade_rcnn_r50_fpn_1x/latest.pth' # 模型加载目录文件
#load_from = '../work_dirs/cascade_rcnn_r50_fpn_1x/cascade_rcnn_r50_coco_pretrained_weights_classes_11.pth'
resume_from = None
workflow = [('train', 1)]

源代码修改部分

1.有同学说没有,segmentation字段,其实,只要注释源代码中那一行,就可以简单处理。
2.对于label=0,可以在coco.py中修改过滤条件。

for i, ann in enumerate(ann_info):if ann.get('ignore', False):continuex1, y1, w, h = ann['bbox']if ann['area'] <= 0 or w < 1 or h < 1:continueif ann['category_id'] == 0:continuebbox = [round(x1,2), round(y1,2), round(x1 + w - 1,2), round(y1 + h - 1,2)]if ann.get('iscrowd', False):gt_bboxes_ignore.append(bbox)else:gt_bboxes.append(bbox)gt_labels.append(ann['category_id'])# gt_masks_ann.append(ann['segmentation'])if gt_bboxes:gt_bboxes = np.array(gt_bboxes, dtype=np.float32)gt_labels = np.array(gt_labels, dtype=np.int64)

安装

1.用conda创建一个新的虚拟环境

conda create -n mmdetection python=3.7
conda activate mmdetection# 安装必要模块
conda install pytorch=1.1.0 torchvision=0.3.0 cudatoolkit=10.0 -c pytorch
pip install cython && pip --no-cache-dir install -r requirements.txt# 安装mmdetection
git clone https://github.com/open-mmlab/mmdetection.git
cd mmdetection
# 安装
python setup.py install
# 编译
python setup.py develop

2.demo测试安装是否成功

#如果安装成功,则该文件可以运行成功。
#coding=utf-8from mmdet.apis import init_detector
from mmdet.apis import inference_detector
from mmdet.apis import show_result# 模型配置文件
config_file = './configs/cascade_rcnn_r50_fpn_1x.py'# 预训练模型文件
checkpoint_file = '../../checkpoints/cascade_rcnn_r50_fpn_20e_20181123-db483a09.pth'# 通过模型配置文件与预训练文件构建模型
model = init_detector(config_file, checkpoint_file, device='cuda:0')# 测试单张图片并进行展示
img = 'demo.jpg'
result = inference_detector(model, img)
show_result(img, result, model.CLASSES)

3.训练

python tools/train.py configs/.py --gpus 1

知识补充

Soft-NMS

Soft-NMS 改进了之前比较暴力的 NMS,当 IOU 超过某个阈值后,不再直接删除该框,而是降低它的置信度 (得分),如果得分低到一个阈值,就会被排除;但是如果降低后仍然较高,就会被保留。

OHEM

OHEM (online hard example mining),翻译过来就是在线难例挖掘,就是对所有的 ROI 的损失进行评估,选择损失较大的来优化网络,详情移步:OHEM 论文解读

损失选择

针对分类的损失函数可以试试如 GHM-C Loss,针对回归的损失函数可以试试如 GHM-R Loss。IOU可以使用 GIou Loss,Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression

warmup lr

翻译一下就是对学习率进行预热,最开始是在 ResNet 的论文中提到的一种方法,原始是先在前几个 epoch 或 iter 或目标达到一个水准之前以小于预设值得 lr 进行训练,然后再恢复 lr 到初始值。后来 Facebook 提出了改良版本,详情请移步论文: Gradual warmup[5]

公众号 持续更新

数据领取: 公众号关键字:天池酒瓶
在这里插入图片描述

数智重庆.全球产业赋能创新大赛-智能算法赛

这篇关于【天池比赛】数智重庆.全球产业赋能创新大赛【赛场一】物体检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/243336

相关文章

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

使用C#如何创建人名或其他物体随机分组

《使用C#如何创建人名或其他物体随机分组》文章描述了一个随机分配人员到多个团队的代码示例,包括将人员列表随机化并根据组数分配到不同组,最后按组号排序显示结果... 目录C#创建人名或其他物体随机分组此示例使用以下代码将人员分配到组代码首先将lstPeople ListBox总结C#创建人名或其他物体随机分组

跨国公司撤出在华研发中心的启示:中国IT产业的挑战与机遇

近日,IBM中国宣布撤出在华的两大研发中心,这一决定在IT行业引发了广泛的讨论和关注。跨国公司在华研发中心的撤出,不仅对众多IT从业者的职业发展带来了直接的冲击,也引发了人们对全球化背景下中国IT产业竞争力和未来发展方向的深思。面对这一突如其来的变化,我们应如何看待跨国公司的决策?中国IT人才又该如何应对?中国IT产业将何去何从?本文将围绕这些问题展开探讨。 跨国公司撤出的背景与

高效+灵活,万博智云全球发布AWS无代理跨云容灾方案!

摘要 近日,万博智云推出了基于AWS的无代理跨云容灾解决方案,并与拉丁美洲,中东,亚洲的合作伙伴面向全球开展了联合发布。这一方案以AWS应用环境为基础,将HyperBDR平台的高效、灵活和成本效益优势与无代理功能相结合,为全球企业带来实现了更便捷、经济的数据保护。 一、全球联合发布 9月2日,万博智云CEO Michael Wong在线上平台发布AWS无代理跨云容灾解决方案的阐述视频,介绍了

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

基于 YOLOv5 的积水检测系统:打造高效智能的智慧城市应用

在城市发展中,积水问题日益严重,特别是在大雨过后,积水往往会影响交通甚至威胁人们的安全。通过现代计算机视觉技术,我们能够智能化地检测和识别积水区域,减少潜在危险。本文将介绍如何使用 YOLOv5 和 PyQt5 搭建一个积水检测系统,结合深度学习和直观的图形界面,为用户提供高效的解决方案。 源码地址: PyQt5+YoloV5 实现积水检测系统 预览: 项目背景

JavaFX应用更新检测功能(在线自动更新方案)

JavaFX开发的桌面应用属于C端,一般来说需要版本检测和自动更新功能,这里记录一下一种版本检测和自动更新的方法。 1. 整体方案 JavaFX.应用版本检测、自动更新主要涉及一下步骤: 读取本地应用版本拉取远程版本并比较两个版本如果需要升级,那么拉取更新历史弹出升级控制窗口用户选择升级时,拉取升级包解压,重启应用用户选择忽略时,本地版本标志为忽略版本用户选择取消时,隐藏升级控制窗口 2.