【故障诊断】用于轴承故障诊断的候选故障频率优化克改进包络频谱研究(Matlab代码实现)

本文主要是介绍【故障诊断】用于轴承故障诊断的候选故障频率优化克改进包络频谱研究(Matlab代码实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

该文讲解一种基于候选故障频率优化克(IESCFFOgram)的改进包络频谱的特征自适应方法,用于从频谱相干性(SCoh)中识别信息 频谱频段,以进行轴承故障诊断。在新方法中,根据SCoh的局部特征自动识别候选故障频率(CFF),而不是标称故障特性频率(FCF), 并进一步用于指导信息频段的选择。 这种新方法完全摆脱了对FCF或稀疏性指标的依赖,可以通过 挖掘隐藏在SCoh平面中的故障信息,自适应地生成诊断IES。 因此,所提出的IESCFFOgram适用于在没有准确FCF的情况下滚动轴承的故障识别。还提供用于估计光谱相关性(或光谱相干性)的快速算法。
用于检测和分析循环平稳信号。

📚2 运行结果

 

 

 

 

 

部分代码:

%% Load Simlated Inner race fault signal
load('SimInner');
Sigplot = SimInner;

%% Basic parameters
Fs = 12800*2;     % Sampling Frequency
N = 1*Fs ;        % Sampling Length
t  = 0 : 1/Fs : (N-1)/Fs ;  % Time
f_m = 142 ;       % Bearing fault charatersitic fraquency
f_shaft = 26;

%% Plot the raw signal components and the frequency spectrum of the mixed signal
% Frequency spectrum of the mixed siganl
nfft = 2*ceil(length(Sigplot(:,5))/2); Freraw = Fs*(0:nfft/2-1)/nfft;
env = Sigplot(:,5);  
% env = abs(hilbert(Sigplot(:,5))); 
Han = hanning(length(env)); Han = Han(:); 
EnvSpec = abs(fft(((env-mean(env)).^1).*Han,nfft)); 
EnvSpec = EnvSpec./max(EnvSpec);
EnvSpec(nfft/2+1:end) = []; 

% Figure
figure(1)
subplotnum_1 = 3;
subplotnum_2 = 2; 
leftleave = 0.067;
upleave = 0.005;
downleave = 0.082;
step_1 = (1-0-upleave)/subplotnum_1;
step_2 = 1/subplotnum_2;
plotheight = step_1*0.70; 
plotwidth = step_2*0.83;   
str = {'(a)','(b)','(c)','(d)','(e)','(f)'};
set (gcf,'unit','centimeters','Position',[12 15 14 8.5], 'color','w'); % 脥录脝卢脦禄脰脙 麓贸脨隆
for i = 1 : subplotnum_1
    for j = 1 : subplotnum_2
        if (i-1)*2+j <6
            plotx = t';
            ploty = Sigplot( : , (i-1)*2+j  );
        else
            plotx =  Freraw/1000;
            ploty = EnvSpec*0.3;
        end
        subplot(subplotnum_1,subplotnum_2, (i-1)*subplotnum_2+j)
        plot( plotx , ploty, 'b' );     % ylabel('Amplitude');
        set(gca,'unit','normalized','Position',[leftleave+(j-1)*step_2   downleave+(subplotnum_1-i)*step_1  plotwidth*1 plotheight*1]);
        figure_FontSize = 7; set(gca,'Fontsize',figure_FontSize,'Fontname','Times New Roman');
        if (i-1)*2+j  == 1
            set(gca,'ytick',[-1 0 1]); set(gca,'ylim',[-1  1]);
            yt = 1;ys = 0;
        elseif (i-1)*2+j  == 2
            set(gca,'ytick',[-2 :2: 2]); set(gca,'ylim',[-2  2]);
            yt = 2;ys = 0;
        elseif (i-1)*2+j  == 3
            set(gca,'ytick',[-0.8 0.4 1.6]); set(gca,'ylim',[-0.8  1.6]);
            yt = 1.6;ys = 0.4;
        elseif (i-1)*2+j  == 4
            set(gca,'ytick',[-3 0 3]); set(gca,'ylim',[-3  3]);
            yt = 3; ys = 0;
        elseif (i-1)*2+j  == 5
            set(gca,'ytick',[-4 0 4]); set(gca,'ylim',[-4  4]);
            yt = 4; ys = 0;   
        elseif (i-1)*2+j  == 6
            set(gca,'ytick',[0 :0.1 : 0.3]); set(gca,'ylim',[0  0.3]);
            yt = 0.3; ys = 0.15;
        end
        if (i-1)*2+j  < 6
            set(gca,'xtick',[0: 0.2: 1]); set(gca,'xlim',[0  1]);
             xlabel('Time [s]');  
             ylabel('Amplitude','Position',[-0.10*1 ys]);
             xt = -0.15*1; 
        else
            set(gca,'xtick',[0: 1: Fs/2/1000]); set(gca,'xlim',[0 Fs/2/1000]);
            xlabel('Frequency [kHz]');
            ylabel('Amplitude','Position',[-0.10*Fs/2/1000 ys]);
            xt = -0.15*Fs/2/1000;
        end
        text(xt,yt,str{(i-1)*2+j},'Fontname','Times New Roman','FontSize',8,'FontWeight','bold')

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]Yao Cheng, Shengbo Wang, Bingyan Chen, Guiming Mei, Weihua Zhang, Han Peng, Guangrong Tian, "An Improved Envelope Spectrum via Candidate Fault Frequency Optimization-gram for Bearing Fault Diagnosis", Journal of Sound and Vibration,Elsevier, 2022.

[2]徐秀芳,徐丹妍,徐森,郭乃瑄,许贺洋.一种结合谱聚类与关联规则的轴承故障诊断方法[J].计算机测量与控制,2023,31(01):51-58.DOI:10.16526/j.cnki.11-4762/tp.2023.01.008.

🌈4 Matlab代码实现

这篇关于【故障诊断】用于轴承故障诊断的候选故障频率优化克改进包络频谱研究(Matlab代码实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/238834

相关文章

Window Server创建2台服务器的故障转移群集的图文教程

《WindowServer创建2台服务器的故障转移群集的图文教程》本文主要介绍了在WindowsServer系统上创建一个包含两台成员服务器的故障转移群集,文中通过图文示例介绍的非常详细,对大家的... 目录一、 准备条件二、在ServerB安装故障转移群集三、在ServerC安装故障转移群集,操作与Ser

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

windos server2022的配置故障转移服务的图文教程

《windosserver2022的配置故障转移服务的图文教程》本文主要介绍了windosserver2022的配置故障转移服务的图文教程,以确保服务和应用程序的连续性和可用性,文中通过图文介绍的非... 目录准备环境:步骤故障转移群集是 Windows Server 2022 中提供的一种功能,用于在多个

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一