NLP(六十四)使用FastChat计算LLaMA-2模型的token长度

2023-10-18 14:20

本文主要是介绍NLP(六十四)使用FastChat计算LLaMA-2模型的token长度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

LLaMA-2模型部署

  在文章NLP(五十九)使用FastChat部署百川大模型中,笔者介绍了FastChat框架,以及如何使用FastChat来部署百川模型。
  本文将会部署LLaMA-2 70B模型,使得其兼容OpenAI的调用风格。部署的Dockerfile文件如下:

FROM nvidia/cuda:11.7.1-runtime-ubuntu20.04RUN apt-get update -y && apt-get install -y python3.9 python3.9-distutils curl
RUN curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
RUN python3.9 get-pip.py
RUN pip3 install fschat

Docker-compose.yml文件如下:

version: "3.9"services:fastchat-controller:build:context: .dockerfile: Dockerfileimage: fastchat:latestports:- "21001:21001"entrypoint: ["python3.9", "-m", "fastchat.serve.controller", "--host", "0.0.0.0", "--port", "21001"]fastchat-model-worker:build:context: .dockerfile: Dockerfilevolumes:- ./model:/root/modelimage: fastchat:latestports:- "21002:21002"deploy:resources:reservations:devices:- driver: nvidiadevice_ids: ['0', '1']capabilities: [gpu]entrypoint: ["python3.9", "-m", "fastchat.serve.model_worker", "--model-names", "llama2-70b-chat", "--model-path", "/root/model/llama2/Llama-2-70b-chat-hf", "--num-gpus", "2", "--gpus",  "0,1", "--worker-address", "http://fastchat-model-worker:21002", "--controller-address", "http://fastchat-controller:21001", "--host", "0.0.0.0", "--port", "21002"]fastchat-api-server:build:context: .dockerfile: Dockerfileimage: fastchat:latestports:- "8000:8000"entrypoint: ["python3.9", "-m", "fastchat.serve.openai_api_server", "--controller-address", "http://fastchat-controller:21001", "--host", "0.0.0.0", "--port", "8000"]

部署成功后,会占用2张A100,每张A100占用约66G显存。
  测试模型是否部署成功:

curl http://localhost:8000/v1/models

输出结果如下:

{"object": "list","data": [{"id": "llama2-70b-chat","object": "model","created": 1691504717,"owned_by": "fastchat","root": "llama2-70b-chat","parent": null,"permission": [{"id": "modelperm-3XG6nzMAqfEkwfNqQ52fdv","object": "model_permission","created": 1691504717,"allow_create_engine": false,"allow_sampling": true,"allow_logprobs": true,"allow_search_indices": true,"allow_view": true,"allow_fine_tuning": false,"organization": "*","group": null,"is_blocking": false}]}]
}

部署LLaMA-2 70B模型成功!

Prompt token长度计算

  在FastChat的Github开源项目中,项目提供了计算Prompt的token长度的API,文件路径为:fastchat/serve/model_worker.py,调用方法为:

curl --location 'localhost:21002/count_token' \
--header 'Content-Type: application/json' \
--data '{"prompt": "What is your name?"}'

输出结果如下:

{"count": 6,"error_code": 0
}

Conversation token长度计算

  在FastChat中计算Conversation(对话)的token长度较为麻烦。
  首先我们需要获取LLaMA-2 70B模型的对话配置,调用API如下:

curl --location --request POST 'http://localhost:21002/worker_get_conv_template'

输出结果如下:

{'conv': {'messages': [],'name': 'llama-2','offset': 0,'roles': ['[INST]', '[/INST]'],'sep': ' ','sep2': ' </s><s>','sep_style': 7,'stop_str': None,'stop_token_ids': [2],'system_message': 'You are a helpful, respectful and honest ''assistant. Always answer as helpfully as ''possible, while being safe. Your answers should ''not include any harmful, unethical, racist, ''sexist, toxic, dangerous, or illegal content. ''Please ensure that your responses are socially ''unbiased and positive in nature.\n''\n''If a question does not make any sense, or is not ''factually coherent, explain why instead of '"answering something not correct. If you don't ""know the answer to a question, please don't share "'false information.','system_template': '[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n'}}

  在FastChat中的对话文件(fastchat/conversation.py)中,提供了对话加工的代码,这里不再展示,使用时直接复制整个文件即可,该文件不依赖任何第三方模块。
  我们需要将对话按照OpenAI的方式加工成对应的Prompt,输入的对话(messages)如下:

messages = [{“role”: “system”, “content”: “You are Jack, you are 20 years old, answer questions with humor.”}, {“role”: “user”, “content”: “What is your name?”},{“role”: “assistant”, “content”: " Well, well, well! Look who’s asking the questions now! My name is Jack, but you can call me the king of the castle, the lord of the rings, or the prince of the pizza party. Whatever floats your boat, my friend!“}, {“role”: “user”, “content”: “How old are you?”}, {“role”: “assistant”, “content”: " Oh, you want to know my age? Well, let’s just say I’m older than a bottle of wine but younger than a bottle of whiskey. I’m like a fine cheese, getting better with age, but still young enough to party like it’s 1999!”}, {“role”: “user”, “content”: “Where is your hometown?”}]

Python代码如下:

# -*- coding: utf-8 -*-
# @place: Pudong, Shanghai 
# @file: prompt.py
# @time: 2023/8/8 19:24
from conversation import Conversation, SeparatorStylemessages = [{"role": "system", "content": "You are Jack, you are 20 years old, answer questions with humor."}, {"role": "user", "content": "What is your name?"},{"role": "assistant", "content": " Well, well, well! Look who's asking the questions now! My name is Jack, but you can call me the king of the castle, the lord of the rings, or the prince of the pizza party. Whatever floats your boat, my friend!"}, {"role": "user", "content": "How old are you?"}, {"role": "assistant", "content": " Oh, you want to know my age? Well, let's just say I'm older than a bottle of wine but younger than a bottle of whiskey. I'm like a fine cheese, getting better with age, but still young enough to party like it's 1999!"}, {"role": "user", "content": "Where is your hometown?"}]llama2_conv = {"conv":{"name":"llama-2","system_template":"[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n","system_message":"You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.\n\nIf a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.","roles":["[INST]","[/INST]"],"messages":[],"offset":0,"sep_style":7,"sep":" ","sep2":" </s><s>","stop_str":None,"stop_token_ids":[2]}}
conv = llama2_conv['conv']conv = Conversation(name=conv["name"],system_template=conv["system_template"],system_message=conv["system_message"],roles=conv["roles"],messages=list(conv["messages"]),  # prevent in-place modificationoffset=conv["offset"],sep_style=SeparatorStyle(conv["sep_style"]),sep=conv["sep"],sep2=conv["sep2"],stop_str=conv["stop_str"],stop_token_ids=conv["stop_token_ids"],)if isinstance(messages, str):prompt = messages
else:for message in messages:msg_role = message["role"]if msg_role == "system":conv.set_system_message(message["content"])elif msg_role == "user":conv.append_message(conv.roles[0], message["content"])elif msg_role == "assistant":conv.append_message(conv.roles[1], message["content"])else:raise ValueError(f"Unknown role: {msg_role}")# Add a blank message for the assistant.conv.append_message(conv.roles[1], None)prompt = conv.get_prompt()print(repr(prompt))

加工后的Prompt如下:

"[INST] <<SYS>>\nYou are Jack, you are 20 years old, answer questions with humor.\n<</SYS>>\n\nWhat is your name?[/INST]  Well, well, well! Look who's asking the questions now! My name is Jack, but you can call me the king of the castle, the lord of the rings, or the prince of the pizza party. Whatever floats your boat, my friend! </s><s>[INST] How old are you? [/INST]  Oh, you want to know my age? Well, let's just say I'm older than a bottle of wine but younger than a bottle of whiskey. I'm like a fine cheese, getting better with age, but still young enough to party like it's 1999! </s><s>[INST] Where is your hometown? [/INST]"

  最后再调用计算Prompt的API(参考上节的Prompt token长度计算),输出该对话的token长度为199.
  我们使用FastChat提供的对话补充接口(v1/chat/completions)验证输入的对话token长度,请求命令为:

curl --location 'http://localhost:8000/v1/chat/completions' \
--header 'Content-Type: application/json' \
--data '{"model": "llama2-70b-chat","messages": [{"role": "system", "content": "You are Jack, you are 20 years old, answer questions with humor."}, {"role": "user", "content": "What is your name?"},{"role": "assistant", "content": " Well, well, well! Look who'\''s asking the questions now! My name is Jack, but you can call me the king of the castle, the lord of the rings, or the prince of the pizza party. Whatever floats your boat, my friend!"}, {"role": "user", "content": "How old are you?"}, {"role": "assistant", "content": " Oh, you want to know my age? Well, let'\''s just say I'\''m older than a bottle of wine but younger than a bottle of whiskey. I'\''m like a fine cheese, getting better with age, but still young enough to party like it'\''s 1999!"}, {"role": "user", "content": "Where is your hometown?"}]
}'

输出结果为:

{"id": "chatcmpl-mQxcaQcNSNMFahyHS7pamA","object": "chat.completion","created": 1691506768,"model": "llama2-70b-chat","choices": [{"index": 0,"message": {"role": "assistant","content": " Ha! My hometown? Well, that's a tough one. I'm like a bird, I don't have a nest, I just fly around and land wherever the wind takes me. But if you really want to know, I'm from a place called \"The Internet\". It's a magical land where memes and cat videos roam free, and the Wi-Fi is always strong. It's a beautiful place, you should visit sometime!"},"finish_reason": "stop"}],"usage": {"prompt_tokens": 199,"total_tokens": 302,"completion_tokens": 103}
}

注意,输出的prompt_tokens为199,这与我们刚才计算的对话token长度的结果是一致的!

总结

  本文主要介绍了如何在FastChat中部署LLaMA-2 70B模型,并详细介绍了Prompt token长度计算以及对话(conversation)的token长度计算。希望能对读者有所帮助~
  笔者的一点心得是:阅读源码真的很重要。
  笔者的个人博客网址为:https://percent4.github.io/ ,欢迎大家访问~

参考网址

  1. NLP(五十九)使用FastChat部署百川大模型: https://blog.csdn.net/jclian91/article/details/131650918
  2. FastChat: https://github.com/lm-sys/FastChat

  欢迎关注我的公众号NLP奇幻之旅,原创技术文章第一时间推送。

  欢迎关注我的知识星球“自然语言处理奇幻之旅”,笔者正在努力构建自己的技术社区。

这篇关于NLP(六十四)使用FastChat计算LLaMA-2模型的token长度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/233129

相关文章

vue使用docxtemplater导出word

《vue使用docxtemplater导出word》docxtemplater是一种邮件合并工具,以编程方式使用并处理条件、循环,并且可以扩展以插入任何内容,下面我们来看看如何使用docxtempl... 目录docxtemplatervue使用docxtemplater导出word安装常用语法 封装导出方

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意