2020牛客暑期多校训练营Valuable Forests(动态规划,组合数学,prufer序列)

本文主要是介绍2020牛客暑期多校训练营Valuable Forests(动态规划,组合数学,prufer序列),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Valuable Forests

题目描述

在这里插入图片描述

输入描述:

在这里插入图片描述

输出描述:

在这里插入图片描述

示例1

输入

5 1000000007
2
3
4
5
107

输出

2
24
264
3240
736935633

题目大意

给定 n n n个节点,求这些节点组成的森林的所有可能中每个点的度的平方和。
要求答案 m o d mod mod给定的模数 M M M

分析

分析这题,发现难点在于,有很多很多的可能,比如说森林中树的个数、每棵树的节点分布情况、树的大小……那么,这些里面最重要的就是前两条,我们分别用数组存下。

d p [ i ] dp[i] dp[i]表示在森林中有 i i i个节点时的总方案数。
f [ i ] f[i] f[i]表示大小为 i i i的无根树的答案。

那么一看我定义的变量就知道是个 d p dp dp题。因为每次考虑最后一棵树就可以完成转移了。

  • 我们先考虑 d p [ i ] dp[i] dp[i]的转移。
    那么假如剩下 j j j个节点给最后一棵树,那么之前的方案是 d p [ i − j ] dp[i-j] dp[ij],然后对于每个方案, j j j个节点的可能是 j j − 2 j^{j-2} jj2,然后考虑节点的编号,由于没有说一定是顺序的,所以前 i i i个节点编号不一定是 1 ∼ i 1\sim i 1i,所以要乘上其组合数,运用隔板法,又因为第 i i i号节点一定要在最后一棵树,否则会重复,所以点数选择要减一,即 C i − 1 j − 1 C_{i-1}^{j-1} Ci1j1
    所以,枚举 j j j即可,如下:
    d p [ i ] = ∑ j = 1 i d p [ i − j ] ∗ j j − 2 ∗ C i − 1 j − 1 dp[i]=\mathop{\sum}\limits_{j=1}^idp[i-j]*j^{j-2}*C_{i-1}^{j-1} dp[i]=j=1idp[ij]jj2Ci1j1
  • 我们再考虑 f [ i ] f[i] f[i]的转移。
    这里要用到一个 p r u f e r prufer prufer序列,说的是一个无根树和一个序列是一一对应的。首先枚举每个节点 p p p,然后再枚举每个节点的度 j j j(度不会大于点数-1),那么答案中肯定是乘上一个 j 2 j^2 j2,然后考虑节点的编号,同上要乘上一个 C i − 2 j − 1 C_{i-2}^{j-1} Ci2j1,减二是因为在构造 p r u f e r prufer prufer的时候是剩下一条边,以防止有自环出现。然后是节点的顺序,乘上一个 ( i − 1 ) i − 1 − j (i-1)^{i-1-j} (i1)i1j
    所以枚举 p , j p,j p,j即可,如下:
    f [ i ] = ∑ p = 1 i ∑ j = 1 i − 1 j 2 ∗ C i − 2 j − 1 ∗ ( i − 1 ) i − 1 − j f[i]=\mathop{\sum}\limits_{p=1}^{i}\mathop{\sum}\limits_{j=1}^{i-1}j^2*C_{i-2}^{j-1}*(i-1)^{i-1-j} f[i]=p=1ij=1i1j2Ci2j1(i1)i1j
    然后发现 p p p在转移的时候并没有用,所以可以把那个 ∑ \sum 压掉。如下:
    f [ i ] = i ∗ ∑ j = 1 i − 1 j 2 ∗ C i − 2 j − 1 ∗ ( i − 1 ) i − 1 − j f[i]=i*\mathop{\sum}\limits_{j=1}^{i-1}j^2*C_{i-2}^{j-1}*(i-1)^{i-1-j} f[i]=ij=1i1j2Ci2j1(i1)i1j

然后就是把上面求出来的一起来算答案。设 a n s [ i ] ans[i] ans[i]表示有 i i i个节点的时候题目的答案。

  • 我们考虑 a n s [ i ] ans[i] ans[i]的转移
    首先枚举一个 j j j表示最后的一棵树有 j j j个节点,然后递推。那么显然前面的答案是 a n s [ i − j ] ∗ j j − 2 ans[i-j]*j^{j-2} ans[ij]jj2。然后是当前的答案是 d p [ j − i ] ∗ f [ j ] dp[j-i]*f[j] dp[ji]f[j]表示当前算出来的答案,然后加起来。最后一样的,要考虑节点编号的问题,乘上节点的组合数。
    所以枚举 j j j,可以得到:
    a n s [ i ] = ∑ j = 1 i C i − 1 j − 1 ∗ ( j j − 2 ∗ a n s [ i − j ] + f [ j ] ∗ d p [ i − j ] ) ans[i]=\mathop{\sum}\limits_{j=1}^{i}C_{i-1}^{j-1}*(j^{j-2}*ans[i-j]+f[j]*dp[i-j]) ans[i]=j=1iCi1j1(jj2ans[ij]+f[j]dp[ij])

做的时候先打表,然后直接输出即可,见代码,注意模。

代码

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int MAXN=5010;
ll mod,C[MAXN][MAXN],dp[MAXN],f[MAXN],ans[MAXN],qp[MAXN][MAXN];//long long
ll ksm(ll a,ll p){if(p<0) return 1ll;else return qp[a][p];}//指数为负是1
int main()
{int T,nnn;scanf("%d%lld",&T,&mod);C[0][0]=1;for(int i=1;i<=5000;i++){C[i][0]=1;for(int j=1;j<=i;j++)C[i][j]=(C[i-1][j]+C[i-1][j-1])%mod;}//用杨辉三角处理组合数for(int i=0;i<=5000;i++){qp[i][0]=1;for(int j=1;j<=5000;j++)qp[i][j]=qp[i][j-1]*i%mod;}//预处理快速幂,让你的快速幂成为O(1)dp[0]=1;for(int i=1;i<=5000;i++)for(int j=1;j<=i;j++)dp[i]=(dp[i]+dp[i-j]*ksm(j,j-2)%mod*C[i-1][j-1]%mod)%mod;//预处理dpfor(int i=1;i<=5000;i++){for(int j=1;j<i;j++)f[i]=(f[i]+j*j%mod*C[i-2][j-1]%mod*ksm(i-1,i-1-j)%mod)%mod;f[i]=f[i]*i%mod;}//预处理ffor(int i=1;i<=5000;i++)for(int j=1;j<=i;j++)ans[i]=(ans[i]+C[i-1][j-1]*(ksm(j,j-2)*ans[i-j]%mod+f[j]*dp[i-j]%mod)%mod)%mod;//算答案while(T--){scanf("%d",&nnn);printf("%lld\n",ans[nnn]);}//直接输出
}

END

要素 bug颇多……

这篇关于2020牛客暑期多校训练营Valuable Forests(动态规划,组合数学,prufer序列)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/233034

相关文章

SpringBoot实现动态插拔的AOP的完整案例

《SpringBoot实现动态插拔的AOP的完整案例》在现代软件开发中,面向切面编程(AOP)是一种非常重要的技术,能够有效实现日志记录、安全控制、性能监控等横切关注点的分离,在传统的AOP实现中,切... 目录引言一、AOP 概述1.1 什么是 AOP1.2 AOP 的典型应用场景1.3 为什么需要动态插

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

VUE动态绑定class类的三种常用方式及适用场景详解

《VUE动态绑定class类的三种常用方式及适用场景详解》文章介绍了在实际开发中动态绑定class的三种常见情况及其解决方案,包括根据不同的返回值渲染不同的class样式、给模块添加基础样式以及根据设... 目录前言1.动态选择class样式(对象添加:情景一)2.动态添加一个class样式(字符串添加:情

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

如何用Python绘制简易动态圣诞树

《如何用Python绘制简易动态圣诞树》这篇文章主要给大家介绍了关于如何用Python绘制简易动态圣诞树,文中讲解了如何通过编写代码来实现特定的效果,包括代码的编写技巧和效果的展示,需要的朋友可以参考... 目录代码:效果:总结 代码:import randomimport timefrom math

Java中JSON字符串反序列化(动态泛型)

《Java中JSON字符串反序列化(动态泛型)》文章讨论了在定时任务中使用反射调用目标对象时处理动态参数的问题,通过将方法参数存储为JSON字符串并进行反序列化,可以实现动态调用,然而,这种方式容易导... 需求:定时任务扫描,反射调用目标对象,但是,方法的传参不是固定的。方案一:将方法参数存成jsON字

.NET利用C#字节流动态操作Excel文件

《.NET利用C#字节流动态操作Excel文件》在.NET开发中,通过字节流动态操作Excel文件提供了一种高效且灵活的方式处理数据,本文将演示如何在.NET平台使用C#通过字节流创建,读取,编辑及保... 目录用C#创建并保存Excel工作簿为字节流用C#通过字节流直接读取Excel文件数据用C#通过字节

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

hdu4869(逆元+求组合数)

//输入n,m,n表示翻牌的次数,m表示牌的数目,求经过n次操作后共有几种状态#include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdlib.h>#includ

动态规划---打家劫舍

题目: 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。 思路: 动态规划五部曲: 1.确定dp数组及含义 dp数组是一维数组,dp[i]代表