本文主要是介绍T5模型和GPT2模型初步对比,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
T5模型和GPT2模型初步对比
之前试着用GPT2模型训练了一个诗词对联生成程序( 训练诗词生成模型)。
这个周末初步试了一下用T5模型做同样的事,是想对比一下看看两个模型的区别。
这两种模型都是基于经典的 Transformer 模型该进来的,都比最初的 Transformer 强大复杂的多。最大的区别是 GPT2 只有解码器,T5 同时有编码器和解码器。理论上T5这种模型比较善于应对给定输入,产生对应的输出的应用:比如翻译,知识问答等。GPT2 比较善于自由创作,比如写一篇短文等。还有一类只有编码器的模型,擅长处理分类问题。但实际上,只要模型够强大,各种NPL问题都能用同一个模型就解决。(比如我在GPT3模型的网站上大致测试了一下它的功能,它在写作、翻译、对话、分类等各种应用中的表现都非常出色。)
T5模型总体上比GPT2模型大不少。我这次测试的是最小型的T5模型,但也比我上次测试的小型GPT2规模大了一倍以上。我用的是与训练GPT2模型大致相同的数据集。训练了个把小时。只对于T5这么庞大的模型来说,可能是有些不够的。所以我也就不做定量分析了,只大致比较一些GPT2和T5预测诗词的效果。
结果和我预想的差不多。T5的对联生成效果稍好于GPT2的效果;但是GPT2的诗词生成效果远好于T5。
T5这种模型非常适合给定上文然后生成相对固定的下文。比如用于中英翻译,上文是“我喜欢打游戏”,下文基本就可以确定为“I like to play video games”,最多用词上时态上稍有变化。这种对应关系是非常明确的。对联的上下联之间也是有比较明确的对应关系的。所以T5处理起来得心应手。GPT2模型生成对联时候,很明显越长的对联,越容易出错。GPT2模型可以明显的感觉到,它在生成新文字时候,更重视附近的单词的影响。这是可以理解的,在一篇文章里,关系越紧密的文字通常距离也越近。但是对于对联中的文字来说,影响最大的却不是附近的字,而是上联中对应位置的哪个字。那个字如果和当前的字间隔了十几个甚至几十个其它的字,GPT2的生成效果就会大受影响。
T5在这方面处理的更好。但是对联和翻译还是不太一样。在翻译任务中,上下文的对应关系十分明确。而一个上联是可以有非常多不同的对应下联的。在这种灵活性上,GPT2反而更有优势。总的来说,普通对联算是个相对简单的问题。T5模型处理的更好,但GPT2也够用了。至于涉及高级技巧的对联,比如拆字联、无情对等等,目前两个模型都还没办法处理好。
诗词生成难度比对联更大。所以总体来说,两个模型产生的效果都还有待提高。相对来说GPT2的结果更顺畅一些。我网页上演示的结果(https://www.qizhen.xyz/)也还是使用的 GPT2 模型。
接续摘录一些生成的结果:
东风吹绿柳,西日映红霞。
人家在何处,月影对芳华。
春风一缕柳丝柔,又见飞花入眼流。
不是东君都解意,只因明月误归舟。
西风吹叶归,秋老金菊黄 。
霜寒衣袖凉,心冷梦魂长 。
长河万里碧,远岫千峰青。山色横江眼,天光上晚星。
朝花香满袖,暮雨露盈庭。回首人生路,孤帆万里行。
红日正当年,欲乘东风追远梦;春光更好处,唯凭彩笔写新篇
其它乱七八糟的结果我就贴在这里了:
http://labview.qizhen.xyz/
这篇关于T5模型和GPT2模型初步对比的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!