T5模型和GPT2模型初步对比

2023-10-18 11:59
文章标签 模型 初步 对比 gpt2 t5

本文主要是介绍T5模型和GPT2模型初步对比,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

T5模型和GPT2模型初步对比


之前试着用GPT2模型训练了一个诗词对联生成程序( 训练诗词生成模型)。
这个周末初步试了一下用T5模型做同样的事,是想对比一下看看两个模型的区别。

这两种模型都是基于经典的 Transformer 模型该进来的,都比最初的 Transformer 强大复杂的多。最大的区别是 GPT2 只有解码器,T5 同时有编码器和解码器。理论上T5这种模型比较善于应对给定输入,产生对应的输出的应用:比如翻译,知识问答等。GPT2 比较善于自由创作,比如写一篇短文等。还有一类只有编码器的模型,擅长处理分类问题。但实际上,只要模型够强大,各种NPL问题都能用同一个模型就解决。(比如我在GPT3模型的网站上大致测试了一下它的功能,它在写作、翻译、对话、分类等各种应用中的表现都非常出色。)

T5模型总体上比GPT2模型大不少。我这次测试的是最小型的T5模型,但也比我上次测试的小型GPT2规模大了一倍以上。我用的是与训练GPT2模型大致相同的数据集。训练了个把小时。只对于T5这么庞大的模型来说,可能是有些不够的。所以我也就不做定量分析了,只大致比较一些GPT2和T5预测诗词的效果。

结果和我预想的差不多。T5的对联生成效果稍好于GPT2的效果;但是GPT2的诗词生成效果远好于T5。
T5这种模型非常适合给定上文然后生成相对固定的下文。比如用于中英翻译,上文是“我喜欢打游戏”,下文基本就可以确定为“I like to play video games”,最多用词上时态上稍有变化。这种对应关系是非常明确的。对联的上下联之间也是有比较明确的对应关系的。所以T5处理起来得心应手。GPT2模型生成对联时候,很明显越长的对联,越容易出错。GPT2模型可以明显的感觉到,它在生成新文字时候,更重视附近的单词的影响。这是可以理解的,在一篇文章里,关系越紧密的文字通常距离也越近。但是对于对联中的文字来说,影响最大的却不是附近的字,而是上联中对应位置的哪个字。那个字如果和当前的字间隔了十几个甚至几十个其它的字,GPT2的生成效果就会大受影响。
T5在这方面处理的更好。但是对联和翻译还是不太一样。在翻译任务中,上下文的对应关系十分明确。而一个上联是可以有非常多不同的对应下联的。在这种灵活性上,GPT2反而更有优势。总的来说,普通对联算是个相对简单的问题。T5模型处理的更好,但GPT2也够用了。至于涉及高级技巧的对联,比如拆字联、无情对等等,目前两个模型都还没办法处理好。

诗词生成难度比对联更大。所以总体来说,两个模型产生的效果都还有待提高。相对来说GPT2的结果更顺畅一些。我网页上演示的结果(https://www.qizhen.xyz/)也还是使用的 GPT2 模型。

接续摘录一些生成的结果:

东风吹绿柳,西日映红霞。
人家在何处,月影对芳华。

春风一缕柳丝柔,又见飞花入眼流。
不是东君都解意,只因明月误归舟。

西风吹叶归,秋老金菊黄 。
霜寒衣袖凉,心冷梦魂长 。

长河万里碧,远岫千峰青。山色横江眼,天光上晚星。
朝花香满袖,暮雨露盈庭。回首人生路,孤帆万里行。

红日正当年,欲乘东风追远梦;春光更好处,唯凭彩笔写新篇

其它乱七八糟的结果我就贴在这里了:
http://labview.qizhen.xyz/

这篇关于T5模型和GPT2模型初步对比的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/232455

相关文章

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

MySQL表锁、页面锁和行锁的作用及其优缺点对比分析

《MySQL表锁、页面锁和行锁的作用及其优缺点对比分析》MySQL中的表锁、页面锁和行锁各有特点,适用于不同的场景,表锁锁定整个表,适用于批量操作和MyISAM存储引擎,页面锁锁定数据页,适用于旧版本... 目录1. 表锁(Table Lock)2. 页面锁(Page Lock)3. 行锁(Row Lock

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot

Python使用Pandas对比两列数据取最大值的五种方法

《Python使用Pandas对比两列数据取最大值的五种方法》本文主要介绍使用Pandas对比两列数据取最大值的五种方法,包括使用max方法、apply方法结合lambda函数、函数、clip方法、w... 目录引言一、使用max方法二、使用apply方法结合lambda函数三、使用np.maximum函数

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee

DeepSeek模型本地部署的详细教程

《DeepSeek模型本地部署的详细教程》DeepSeek作为一款开源且性能强大的大语言模型,提供了灵活的本地部署方案,让用户能够在本地环境中高效运行模型,同时保护数据隐私,在本地成功部署DeepSe... 目录一、环境准备(一)硬件需求(二)软件依赖二、安装Ollama三、下载并部署DeepSeek模型选