第33步 机器学习分类实战:误判病例分析

2023-10-18 10:10

本文主要是介绍第33步 机器学习分类实战:误判病例分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

填最后一个坑,如何寻找误判的病例。

之前我们在介绍AUC的时候,提到了两个函数:predict和predict_proba,复习一下:

auc_test = roc_auc_score(y_test, y_testprba) 

roc_auc_score的参数呢,包括两个:y_test是实际值,y_testprba是预测的概率(注意,是概率,而不是分类,要和y_pred做区别),来看看代码:

y_pred = classifier.predict(X_test)
y_testprba = classifier.predict_proba(X_test)[:,1] 

来,一个是predict,一个是predict_proba,输出的如图所示。

一目了然了吧,就是根据0.5为阈值进行分类的。

所以呢,可以根据y_pred和y_true就可以判断是所谓的误诊(y_true是0,而y_pred是1)还是漏诊(y_true是1,而y_pred是0)。

具体操作在excel即可完成,最重的就是筛选出误诊和漏诊的病例:

我们还是用Xgboost做例子(测试集):

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
dataset = pd.read_csv('X disease code fs.csv')
X = dataset.iloc[:, 1:14].values
Y = dataset.iloc[:, 0].values
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.30, random_state = 666)
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
import xgboost as xgb
param_grid=[{'n_estimators':[35],'eta':[0.1],'max_depth':[1],'gamma':[0],'min_child_weight':[5],'max_delta_step':[1],'subsample':[0.8],'colsample_bytree':[0.8],'colsample_bylevel':[0.8],'reg_lambda':[9],'reg_alpha':[5],},]
boost = xgb.XGBClassifier()
classifier = xgb.XGBClassifier()
from sklearn.model_selection import GridSearchCV
grid_search = GridSearchCV(boost, param_grid, n_jobs = -1, verbose = 2, cv=10)      
grid_search.fit(X_train, y_train)    
classifier = grid_search.best_estimator_  
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
y_testprba = classifier.predict_proba(X_test)[:,1] 
y_trainpred = classifier.predict(X_train)
y_trainprba = classifier.predict_proba(X_train)[:,1]

由于我们演示的是测试集,所以关注y_pred和y_test:

 接着,我们需要在运行一次代码:

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.30, random_state = 666)

我们需要获得y_text对应的X_test,而上述那一串代码的X_test的数据已经被归一化了,没法使用,我们需要的是原始数据:

然后,我们把y_pred和y_test以及X_test复制到新的excel(注意:不要搞乱顺序,目前顺序是一一对应的)

 不放心的话,可以调出原始数据,稍微对应一下是否做到一一对应了,比如:

对应得上,不放心就再找几个做校对。

接着,新开一列,用真实值减去预测值,那么误诊(真实是0,而预测是1)就是-1,漏诊(真实是1,而预测是0)就是1。使用筛选功能,分别把它们提取出来,做你想做的分析,水几个图还是OK的。

 终于,花了32期,把机器学习分类讲完了,洋洋洒洒4-5万字,有种写博士毕业论文的感觉了,希望对大家有用,也欢迎进行技术探讨。特别是Xgboost、LightGBM还有Catboost,以及各种Stacking模型,掌握的还是不够深入。

这篇关于第33步 机器学习分类实战:误判病例分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/231886

相关文章

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

kotlin中const 和val的区别及使用场景分析

《kotlin中const和val的区别及使用场景分析》在Kotlin中,const和val都是用来声明常量的,但它们的使用场景和功能有所不同,下面给大家介绍kotlin中const和val的区别,... 目录kotlin中const 和val的区别1. val:2. const:二 代码示例1 Java

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3

找不到Anaconda prompt终端的原因分析及解决方案

《找不到Anacondaprompt终端的原因分析及解决方案》因为anaconda还没有初始化,在安装anaconda的过程中,有一行是否要添加anaconda到菜单目录中,由于没有勾选,导致没有菜... 目录问题原因问http://www.chinasem.cn题解决安装了 Anaconda 却找不到 An