深度学习课程大纲_2019 伯克利深度学习课程正式上线,李沐主讲!

2023-10-18 06:30

本文主要是介绍深度学习课程大纲_2019 伯克利深度学习课程正式上线,李沐主讲!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

b8a019d7-0413-eb11-8da9-e4434bdf6706.png

红色石头的个人网站:

红色石头的个人博客-机器学习、深度学习之路​redstonewill.com
b9a019d7-0413-eb11-8da9-e4434bdf6706.png

李沐大神的新课《Introduction to Deep Learning》于今年 1 月份在 UC 伯克利上线了。同授这门课程的还有李沐的亚马逊同事 Alex Smola。

课程介绍

本课程提供深入学习的实践介绍,包括理论动机和如何在实践中实施。作为课程的一部分,我们将介绍多层感知器、反向传播、自动微分和随机梯度下降。此外,我们还引入了用于图像处理的卷积网络,从简单的 Lenet 到用于高精度模型的 Resnet 等最新架构。其次,讨论了序列模型和循环网络,如 LSTMS、GRU 和注意机制。在整个课程中,我们强调高效的实现、优化和可扩展性,例如多个 GPU 和多台机器。本课程的目标是提供一个良好的理解和能力,建立现代非参数估计。整个课程以 Jupyter 笔记本为基础,让学生快速获得经验。

课程内容大致是按照李沐老师的开源新书《动手学深度学习》来安排的。

先修条件

本课程需要具备一些先修条件。例如 Python 编程(CS 61a 或 CS/STAT C8 和 CS 88), 线性代数 (MATH 54, STAT 89A, or EE 16A), 概率论 (STAT 134, STAT 140, or EE 126), 统计学 (STAT 20, STAT 135, or CS/STAT C100) 。

课程计划

课程大纲和计划如下:

baa019d7-0413-eb11-8da9-e4434bdf6706.png

bba019d7-0413-eb11-8da9-e4434bdf6706.png

目前前一半的课程已经放出,包含 pdf 课件。

课程作业

该课程每一周都会配备编程作业,在 Jupyter 上完成。目前已经放出前5周的编程作业!

bca019d7-0413-eb11-8da9-e4434bdf6706.png

课程资源

课程主页:

http://courses.d2l.ai/berkeley-stat-157/index.html

视频地址:

B 站:https://www.bilibili.com/video/av41905755/

油管:https://www.youtube.com/playlist?list=PLZSO_6-bSqHQHBCoGaObUljoXAyyqhpFW

书籍:

https://zh.d2l.ai/

GitHub:

d2l-ai/berkeley-stat-157​github.com
bda019d7-0413-eb11-8da9-e4434bdf6706.png

bea019d7-0413-eb11-8da9-e4434bdf6706.png

这篇关于深度学习课程大纲_2019 伯克利深度学习课程正式上线,李沐主讲!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/230812

相关文章

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

BUUCTF靶场[web][极客大挑战 2019]Http、[HCTF 2018]admin

目录   [web][极客大挑战 2019]Http 考点:Referer协议、UA协议、X-Forwarded-For协议 [web][HCTF 2018]admin 考点:弱密码字典爆破 四种方法:   [web][极客大挑战 2019]Http 考点:Referer协议、UA协议、X-Forwarded-For协议 访问环境 老规矩,我们先查看源代码