【扩散模型从原理到实战】Chapter2 Hugging Face简介

2023-10-18 01:44

本文主要是介绍【扩散模型从原理到实战】Chapter2 Hugging Face简介,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • Hugging Face的核心功能介绍
  • Hugging Face开源库
  • Hugging Face开源库
  • Gradio工具介绍
  • 参考资料

Hugging Face是机器学习从业者协作和交流的平台,成立于2016年,在纽约和巴黎设有办事处,团队成员来自世界各地,远程办公。
致力于让好的机器学习能力可以为所有人使用
Hugging Face的logo:
image.png

Hugging Face的核心功能介绍

Hugging Face的核心产品是Hugging Face Hub,这是一个基于Git进行版本管理的存储库,用户可以在这里托管自己的模型、数据集,并为自己的模型加入模型卡片以介绍模型的内容和用法

模型卡片
这里以bert-base-uncased为例
image.png
卡片包含了该模型的全部相关信息,名称、分类标签、开源协议以及预印本平台arXiv.org上的论文引用、模型的变体发展、应用和局限、使用方法等

提供Auto Train功能支持用户上传数据集微调模型
image.png

推理API功能
image.png

  1. 在模型页面上直接“运行”模型的输入并得到输出结果
    image.png

  2. 单击模型页面上的“Deploy”按钮,选择“Inference API”来调出示例代码

数据集
image.png
可以使用Hugging Face开源的Datasets中的方法进行加载

Spaces应用功能
助力开发者快速创建和部署一个机器学习应用
SDK支持使用Gradio、Streamlit、Docker和静态HTML
Space应用能获得Hugging Face提供的免费的两核CPU以及16GB内存的服务器
image.png
每个Space应用都有一个可以直接访问的网址,域名格式为用户名-Space应用名.hf.space
举个例子:
由微软认知服务团队创建的名为mm-react的Space应用的网址为
https://microsoft-cognitive-service-mm-react.hf.space
用户个人主页访问:https://hf.co/用户名
举个例子
https://hf.co/microsoft-cognitive-service

克隆某Space应用
通过Space应用的“Duplicate this Space”功能
image.png

克隆之后,可以在该Space应用原有配置的基础上加上自己的配置值,例如使用自己的计算服务器资源、自己的API密钥等
image.png

Hugging Face开源库

Hugging Face的核心产品是Hugging Face Hub,这是一个基于Git进行版本管理的存储库,用户可以在这里托管自己的模型、数据集,并为自己的模型加入模型卡片以介绍模型的内容和用法

模型卡片
这里以bert-base-uncased为例
image.png
卡片包含了该模型的全部相关信息,名称、分类标签、开源协议以及预印本平台arXiv.org上的论文引用、模型的变体发展、应用和局限、使用方法等

提供Auto Train功能支持用户上传数据集微调模型
image.png

推理API功能
image.png

  1. 在模型页面上直接“运行”模型的输入并得到输出结果
    image.png

  2. 单击模型页面上的“Deploy”按钮,选择“Inference API”来调出示例代码

模型训练时使用的数据集
image.png
可以使用Hugging Face开源的Datasets中的方法进行加载

Spaces功能:助力开发者快速创建和部署一个机器学习应用
SDK支持使用Gradio、Streamlit、Docker和静态HTML
Space应用能获得Hugging Face提供的免费的两核CPU以及16GB内存的服务器
image.png
每个Space应用都有一个可以直接访问的网址,域名格式为用户名-Space应用名.hf.space
举个例子:由微软认知服务团队创建的名为mm-react的Space应用的网址为
https://microsoft-cognitive-service-mm-react.hf.space
用户个人主页访问:https://hf.co/用户名,举个例子,https://hf.co/microsoft-cognitive-service

克隆某Space应用
通过Space应用的“Duplicate this Space”功能
image.png

克隆之后,可以在该Space应用原有配置的基础上加上自己的配置值,例如使用自己的计算服务器资源、自己的API密钥等
image.png

Hugging Face开源库

机器学习库和工具

Transformers
帮助使用者下载和训练SOTA的预训练模型
支持PyTorch、TensorFlow和JAX,并支持框架之间的互操作
模型导出格式支持ONNX和TorchScript等

Datasets
帮助使用者加载各种数据集

Diffusers
操作扩散模型的工具箱
提供功能包括直接使用各种扩散模型完成生成任务、使用各种噪声调度器调节模型

Accelerate
运行PyTorch训练脚本

Optimum
提供了一组性能优化工具

timm
深度学习库,包含图像模型、优化器、调度器以及训练/验证脚本等内容

Tokenizers
适用于研究和生产环境的高性能分词器

Evaluate
使用数十种流行的指标对数据集和模型进行评估

Hugging Face的GitHub组织页面以及“置顶”的开源代码仓库:
image.png

Gradio工具介绍

Gradio是什么
由Hugging Face推出的一个开源的Python库,用于构建机器学习和数据科学演示以及Web应用
帮助研究者快速创建一个交互式应用

安装和运行Gradio

  1. 安装
pip install gradio
  1. 需要构建交互式应用的代码
    app.py,代码内容如下
import gradio as grdef greet(name):return "Hello " + name + "!"demo = gr.Interface(fn=greet, inputs="text", outputs="texts")demo.launch()
  1. 使用gradio命令运行Gradio应用脚本
gradio app.py

结果展示:
image.png

gradio.Interface接口
功能:为任何Python函数提供用户界面
参数介绍:
fn:待创建用户界面的目标函数的名称
inputs:用于输入的组件(如"text" “image"或"audio”)
outputs:用于输出的组件(如"text" “image"或"label”)
inputs和outputs是根据待输入内容而变化的组件

应用部署
在创建Space应用的时候将SDK设置为Gradio,即可实现将使用Gradio构建的应用直接部署到Hugging Face Spaces上
image.png
注意
使用Gradio需要Python 3.7或更高的Python版本,这对python脚本中代码语法提出了要求

参考资料

  1. 《扩散模型从原理到实战》

这篇关于【扩散模型从原理到实战】Chapter2 Hugging Face简介的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/229366

相关文章

Qt QCustomPlot库简介(最新推荐)

《QtQCustomPlot库简介(最新推荐)》QCustomPlot是一款基于Qt的高性能C++绘图库,专为二维数据可视化设计,它具有轻量级、实时处理百万级数据和多图层支持等特点,适用于科学计算、... 目录核心特性概览核心组件解析1.绘图核心 (QCustomPlot类)2.数据容器 (QCPDataC

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

Java MQTT实战应用

《JavaMQTT实战应用》本文详解MQTT协议,涵盖其发布/订阅机制、低功耗高效特性、三种服务质量等级(QoS0/1/2),以及客户端、代理、主题的核心概念,最后提供Linux部署教程、Sprin... 目录一、MQTT协议二、MQTT优点三、三种服务质量等级四、客户端、代理、主题1. 客户端(Clien

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

在Spring Boot中集成RabbitMQ的实战记录

《在SpringBoot中集成RabbitMQ的实战记录》本文介绍SpringBoot集成RabbitMQ的步骤,涵盖配置连接、消息发送与接收,并对比两种定义Exchange与队列的方式:手动声明(... 目录前言准备工作1. 安装 RabbitMQ2. 消息发送者(Producer)配置1. 创建 Spr

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

MySQL中的索引结构和分类实战案例详解

《MySQL中的索引结构和分类实战案例详解》本文详解MySQL索引结构与分类,涵盖B树、B+树、哈希及全文索引,分析其原理与优劣势,并结合实战案例探讨创建、管理及优化技巧,助力提升查询性能,感兴趣的朋... 目录一、索引概述1.1 索引的定义与作用1.2 索引的基本原理二、索引结构详解2.1 B树索引2.2

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

从入门到精通MySQL 数据库索引(实战案例)

《从入门到精通MySQL数据库索引(实战案例)》索引是数据库的目录,提升查询速度,主要类型包括BTree、Hash、全文、空间索引,需根据场景选择,建议用于高频查询、关联字段、排序等,避免重复率高或... 目录一、索引是什么?能干嘛?核心作用:二、索引的 4 种主要类型(附通俗例子)1. BTree 索引(