POJ 1631 Bridging signals 最长上升子序列小结 LIS的O(nlogn)算法

2023-10-17 09:38

本文主要是介绍POJ 1631 Bridging signals 最长上升子序列小结 LIS的O(nlogn)算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

POJ 1631 Bridging signals

题目分析:
题目要求避免相交,则可转化为对给定的序列求最长上升子序列。

首先使用了dp来求解,复杂度为O(n*n),在题目的数据范围下超时了…

#include<iostream>
#include<stdio.h>
#include<algorithm>
using namespace std;
int dp[40000];
int num[40000];
int main() {int t;scanf("%d", &t);while (t--) {int p;scanf("%d", &p);for (int i = 1; i <= p; i++) {scanf("%d", &num[i]);dp[i] = 1;}for (int i = 1; i <= p; i++) {for (int j = 1; j < i; j++) {if (num[j] < num[i]) {dp[i] = max(dp[i], dp[j] + 1);}}}int ans = 0;for (int i = 1; i <= p; i++) {//cout << "dp " << dp[i] << endl;ans = max(ans, dp[i]);}//cout << "ans " << ans << endl;cout << ans << endl;}//system("pause");
}

于是参考各类大神们的博客,学习了LIS问题的O(nlogn)算法

LIS问题的O(nlogn)算法

定义ans[k] : 长度为k的上升子序列的最末尾元素,若有多个长度为k的上升子序列,则保存值最小的末尾元素
定义len用于保存ans数组的长度,也即目前能够得到的最长子序列长度
定义num[]数组来保存给定的序列

易得初始化条件为:ans[1]=num[1], len=1
下面对其余的序列元素进行遍历:

for (int i = 2; i <= n; i++) {新的元素大于目前最长子序列的末尾元素,则添加到序列尾部if (num[i] > ans[len]) {ans[++len] = num[i];}/*否则找到新的元素num[i]所能构成的最长子序列长度,此时num[i]小于原先时候该长度的末尾元素,用num[i]替换原末尾元素*/else {int tmp = binary_search(i);//在ans序列中返回大于num[i]的最小下标ans[tmp] = num[i];}
}

这里有ans[tmp-1]<num[i]<ans[tmp]
注意ans数组是单调的(递增),在ans中插入新元素时无需挪动(操作为在尾部添加或者替换前面的元素)——也就是说我们可以使用二分查找,将每一个数字num[i]的插入时间优化到O(logn)~~~~~于是算法总的时间复杂度就降低到了O(nlogn)~!
即利用ans数组的单调性,在查找tmp的时候可以二分查找,从而总的时间复杂度为nlogn

AC代码

/*二分搜索-----最长上升子序列nlogn算法
*/
#include<iostream>
#include<stdio.h>
#include<algorithm>
using namespace std;
int num[40001], ans[40001], len;int binary_search(int i) {//在ans序列中返回大于num[i]的最小下标int left, right, mid;left = 1, right = len;while (left < right) {mid = left + (right - left) / 2;if (ans[mid] > num[i])right = mid;else left = mid + 1;}return left;
}
int main() {int t;scanf("%d", &t);while (t--) {int n;scanf("%d", &n);for (int i = 1; i <= n; i++) {scanf("%d", &num[i]);}ans[1] = num[1]; len = 1;for (int i = 2; i <= n; i++) {if (num[i] > ans[len]) {ans[++len] = num[i];}else {int tmp = binary_search(i);//使用stl中的lower_bound函数//int tmp = lower_bound(ans + 1, ans + 1 + len, num[i]) -ans; ans[tmp] = num[i];}}cout << len << endl;}
}

注意ans数组形成的序列并不是最长的递增子序列!!!请看上面的ans数组定义!!!

下面是一个简易的示例:

		num 4  2  6  3  1  5
初始化	ans 4
i=2		.   2
i=3		.	2  6
i=4		.	2  3
i=5		.	1  3
i=6		. 	1  3  5
最终结果len=3,即最长的递增子序列长度为31 3 5显然无法从给定序列中构成
ans[1]=1意味着长度为1的递增子序列末尾长度最小为1
ans[2]=3意味着长度为2的递增子序列末尾长度最小为3
ans[3]=5意味着长度为3的递增子序列末尾长度最小为5

这篇关于POJ 1631 Bridging signals 最长上升子序列小结 LIS的O(nlogn)算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/224517

相关文章

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Java中的String.valueOf()和toString()方法区别小结

《Java中的String.valueOf()和toString()方法区别小结》字符串操作是开发者日常编程任务中不可或缺的一部分,转换为字符串是一种常见需求,其中最常见的就是String.value... 目录String.valueOf()方法方法定义方法实现使用示例使用场景toString()方法方法

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

Flutter打包APK的几种方式小结

《Flutter打包APK的几种方式小结》Flutter打包不同于RN,Flutter可以在AndroidStudio里编写Flutter代码并最终打包为APK,本篇主要阐述涉及到的几种打包方式,通... 目录前言1. android原生打包APK方式2. Flutter通过原生工程打包方式3. Futte

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Docker镜像pull失败两种解决办法小结

《Docker镜像pull失败两种解决办法小结》有时候我们在拉取Docker镜像的过程中会遇到一些问题,:本文主要介绍Docker镜像pull失败两种解决办法的相关资料,文中通过代码介绍的非常详细... 目录docker 镜像 pull 失败解决办法1DrQwWCocker 镜像 pull 失败解决方法2总

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

Ollama Python 使用小结

《OllamaPython使用小结》Ollama提供了PythonSDK,使得开发者能够在Python环境中轻松集成和使用本地运行的模型进行自然语言处理任务,具有一定的参考价值,感兴趣的可以了解一... 目录安装 python SDK启动本地服务使用 Ollama 的 Python SDK 进行推理自定义客

java String.join()的使用小结

《javaString.join()的使用小结》String.join()是Java8引入的一个实用方法,用于将多个字符串按照指定分隔符连接成一个字符串,本文主要介绍了javaString.join... 目录1. 方法定义2. 基本用法2.1 拼接多个字符串2.2 拼接集合中的字符串3. 使用场景和示例3