POJ 1631 Bridging signals 最长上升子序列小结 LIS的O(nlogn)算法

2023-10-17 09:38

本文主要是介绍POJ 1631 Bridging signals 最长上升子序列小结 LIS的O(nlogn)算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

POJ 1631 Bridging signals

题目分析:
题目要求避免相交,则可转化为对给定的序列求最长上升子序列。

首先使用了dp来求解,复杂度为O(n*n),在题目的数据范围下超时了…

#include<iostream>
#include<stdio.h>
#include<algorithm>
using namespace std;
int dp[40000];
int num[40000];
int main() {int t;scanf("%d", &t);while (t--) {int p;scanf("%d", &p);for (int i = 1; i <= p; i++) {scanf("%d", &num[i]);dp[i] = 1;}for (int i = 1; i <= p; i++) {for (int j = 1; j < i; j++) {if (num[j] < num[i]) {dp[i] = max(dp[i], dp[j] + 1);}}}int ans = 0;for (int i = 1; i <= p; i++) {//cout << "dp " << dp[i] << endl;ans = max(ans, dp[i]);}//cout << "ans " << ans << endl;cout << ans << endl;}//system("pause");
}

于是参考各类大神们的博客,学习了LIS问题的O(nlogn)算法

LIS问题的O(nlogn)算法

定义ans[k] : 长度为k的上升子序列的最末尾元素,若有多个长度为k的上升子序列,则保存值最小的末尾元素
定义len用于保存ans数组的长度,也即目前能够得到的最长子序列长度
定义num[]数组来保存给定的序列

易得初始化条件为:ans[1]=num[1], len=1
下面对其余的序列元素进行遍历:

for (int i = 2; i <= n; i++) {新的元素大于目前最长子序列的末尾元素,则添加到序列尾部if (num[i] > ans[len]) {ans[++len] = num[i];}/*否则找到新的元素num[i]所能构成的最长子序列长度,此时num[i]小于原先时候该长度的末尾元素,用num[i]替换原末尾元素*/else {int tmp = binary_search(i);//在ans序列中返回大于num[i]的最小下标ans[tmp] = num[i];}
}

这里有ans[tmp-1]<num[i]<ans[tmp]
注意ans数组是单调的(递增),在ans中插入新元素时无需挪动(操作为在尾部添加或者替换前面的元素)——也就是说我们可以使用二分查找,将每一个数字num[i]的插入时间优化到O(logn)~~~~~于是算法总的时间复杂度就降低到了O(nlogn)~!
即利用ans数组的单调性,在查找tmp的时候可以二分查找,从而总的时间复杂度为nlogn

AC代码

/*二分搜索-----最长上升子序列nlogn算法
*/
#include<iostream>
#include<stdio.h>
#include<algorithm>
using namespace std;
int num[40001], ans[40001], len;int binary_search(int i) {//在ans序列中返回大于num[i]的最小下标int left, right, mid;left = 1, right = len;while (left < right) {mid = left + (right - left) / 2;if (ans[mid] > num[i])right = mid;else left = mid + 1;}return left;
}
int main() {int t;scanf("%d", &t);while (t--) {int n;scanf("%d", &n);for (int i = 1; i <= n; i++) {scanf("%d", &num[i]);}ans[1] = num[1]; len = 1;for (int i = 2; i <= n; i++) {if (num[i] > ans[len]) {ans[++len] = num[i];}else {int tmp = binary_search(i);//使用stl中的lower_bound函数//int tmp = lower_bound(ans + 1, ans + 1 + len, num[i]) -ans; ans[tmp] = num[i];}}cout << len << endl;}
}

注意ans数组形成的序列并不是最长的递增子序列!!!请看上面的ans数组定义!!!

下面是一个简易的示例:

		num 4  2  6  3  1  5
初始化	ans 4
i=2		.   2
i=3		.	2  6
i=4		.	2  3
i=5		.	1  3
i=6		. 	1  3  5
最终结果len=3,即最长的递增子序列长度为31 3 5显然无法从给定序列中构成
ans[1]=1意味着长度为1的递增子序列末尾长度最小为1
ans[2]=3意味着长度为2的递增子序列末尾长度最小为3
ans[3]=5意味着长度为3的递增子序列末尾长度最小为5

这篇关于POJ 1631 Bridging signals 最长上升子序列小结 LIS的O(nlogn)算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/224517

相关文章

mybatis映射器配置小结

《mybatis映射器配置小结》本文详解MyBatis映射器配置,重点讲解字段映射的三种解决方案(别名、自动驼峰映射、resultMap),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定... 目录select中字段的映射问题使用SQL语句中的别名功能使用mapUnderscoreToCame

Vue和React受控组件的区别小结

《Vue和React受控组件的区别小结》本文主要介绍了Vue和React受控组件的区别小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录背景React 的实现vue3 的实现写法一:直接修改事件参数写法二:通过ref引用 DOMVu

Vite 打包目录结构自定义配置小结

《Vite打包目录结构自定义配置小结》在Vite工程开发中,默认打包后的dist目录资源常集中在asset目录下,不利于资源管理,本文基于Rollup配置原理,本文就来介绍一下通过Vite配置自定义... 目录一、实现原理二、具体配置步骤1. 基础配置文件2. 配置说明(1)js 资源分离(2)非 JS 资

Java Stream 并行流简介、使用与注意事项小结

《JavaStream并行流简介、使用与注意事项小结》Java8并行流基于StreamAPI,利用多核CPU提升计算密集型任务效率,但需注意线程安全、顺序不确定及线程池管理,可通过自定义线程池与C... 目录1. 并行流简介​特点:​2. 并行流的简单使用​示例:并行流的基本使用​3. 配合自定义线程池​示

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

Go之errors.New和fmt.Errorf 的区别小结

《Go之errors.New和fmt.Errorf的区别小结》本文主要介绍了Go之errors.New和fmt.Errorf的区别,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考... 目录error的基本用法1. 获取错误信息2. 在条件判断中使用基本区别1.函数签名2.使用场景详细对

C#异步编程ConfigureAwait的使用小结

《C#异步编程ConfigureAwait的使用小结》本文介绍了异步编程在GUI和服务器端应用的优势,详细的介绍了async和await的关键作用,通过实例解析了在UI线程正确使用await.Conf... 异步编程是并发的一种形式,它有两大好处:对于面向终端用户的GUI程序,提高了响应能力对于服务器端应

MySQL慢查询工具的使用小结

《MySQL慢查询工具的使用小结》使用MySQL的慢查询工具可以帮助开发者识别和优化性能不佳的SQL查询,本文就来介绍一下MySQL的慢查询工具,具有一定的参考价值,感兴趣的可以了解一下... 目录一、启用慢查询日志1.1 编辑mysql配置文件1.2 重启MySQL服务二、配置动态参数(可选)三、分析慢查

c++日志库log4cplus快速入门小结

《c++日志库log4cplus快速入门小结》文章浏览阅读1.1w次,点赞9次,收藏44次。本文介绍Log4cplus,一种适用于C++的线程安全日志记录API,提供灵活的日志管理和配置控制。文章涵盖... 目录简介日志等级配置文件使用关于初始化使用示例总结参考资料简介log4j 用于Java,log4c