一种新型元启发式算法-长鼻浣熊优化算法(COA)

2023-10-16 22:30

本文主要是介绍一种新型元启发式算法-长鼻浣熊优化算法(COA),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、COA算法理论基础

二、COA算法数学模型

2.1 种群初始化

2.2 对鬣蜥狩猎和攻击策略(勘探阶段)

2.3 逃离捕食者的过程(开发阶段)

三、COA算法流程图 

四、COA算法运行结果


 

        长鼻浣熊优化算法(Coati Optimization Algorithm,COA)算法是Mohammad Dehghani 等人于2022年提出的一种模拟长鼻浣熊的两种自然行为:攻击和狩猎鬣鳞蜥时的行为和逃离捕食者的行为的元启发式算法。该算法在勘探和开发的两个阶段中进行描述和数学建模。

一、COA算法理论基础

       长鼻浣熊是一种日间活动的哺乳动物,活动于美国西南部、墨西哥、中美洲和南美洲。长鼻浣熊的体积大约和一只大家猫相同,体重在2到8公斤之间,站在肩膀上大约有30厘米高。雄性可以长到几乎是雌性的两倍大,有锋利的大犬齿。长鼻浣熊是杂食动物,比如吃无脊椎动物(狼蛛),小型脊椎动物的猎物(小鸟、蜥蜴、啮齿动物、鳄鱼蛋和鸟卵),最喜欢吃的食物之一是绿色鬣鳞蜥。它们也被大型猛禽猎杀(鹰)。因此COA算法是通过模拟长鼻浣熊攻击鬣鳞蜥的策略和面对与躲避捕食者的行为提出的一种元启发式算法。

f1098406863127858f4aba8d35c9bd7b.jpeg

图1 长鼻浣熊

二、COA算法数学模型

2.1 种群初始化

bbabdeef9b2d441eac3879fbb5165f06.png

756f4d815c7b46a9a735de8c09c65ef7.png

2.2 对鬣蜥狩猎和攻击策略(勘探阶段)

       当长鼻浣熊攻击鬣鳞蜥时,一群浣熊爬上树,到达一只鬣鳞蜥附近时恐吓它。其他几个长鼻浣熊在树下等待,直到鬣鳞蜥掉落到地上,长鼻浣熊开始攻击和猎捕它。该策略的模式图如图2所示:

80d63858a63c4c9fbac26fc3ff438d34.png

图2  COA 第一阶段的模式图

 

cdfdd77abb5b405792cebb03ef41ee17.png

2.3 逃离捕食者的过程(开发阶段)

       当一个捕食者攻击一只长鼻浣熊同伴时,这只浣熊就会逃离它原来的位置。在这个过程中使长鼻浣熊处于接近原先位置的一个安全区域,以躲避捕食者。开发阶段模型图如下所示:

cc32751eba9c4a44afe46d7a1f40e10a.png

图3  COA 第二阶段逃离捕食者的模式图

 794d897d3bf94e699cf410d0c3813bff.png

三、COA算法流程图 

74a2acbccb01459f92678223736bb6df.png

图4 COA流程图

四、COA算法运行结果

F1:

The best optimal value of the objective funciton found by COA  for F1  is : 0

a95caca770a24fadaf84ed904f68d82a.png

 

F6:

 

The best optimal value of the objective funciton found by COA  for F6  is : 0

ea64c45ad5774a19ab64368e1f2d1aea.png

F8:

The best optimal value of the objective funciton found by COA  for F8  is : -4189.828

2990459bf822468f839783fb42319059.png

 

 

 

 

 

这篇关于一种新型元启发式算法-长鼻浣熊优化算法(COA)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/221179

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

MySQL高性能优化规范

前言:      笔者最近上班途中突然想丰富下自己的数据库优化技能。于是在查阅了多篇文章后,总结出了这篇! 数据库命令规范 所有数据库对象名称必须使用小写字母并用下划线分割 所有数据库对象名称禁止使用mysql保留关键字(如果表名中包含关键字查询时,需要将其用单引号括起来) 数据库对象的命名要能做到见名识意,并且最后不要超过32个字符 临时库表必须以tmp_为前缀并以日期为后缀,备份