R语言进行孟德尔随机化+meta分析(2)----基于R和stata

2023-09-29 14:11

本文主要是介绍R语言进行孟德尔随机化+meta分析(2)----基于R和stata,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目前不少文章用到了孟德尔随机化+meta分析,在上一章咱们简单介绍了一下meta分析的基础知识。咱们今天来介绍一篇11分文章,由文章看看孟德尔随机化+meta分析如何进行,文章的题目是:Appraising the causal role of smoking in multiple diseases: A systematic review and meta-analysis of Mendelian randomization studies(评估吸烟在多种疾病中的因果作用:孟德尔随机研究的系统回顾和荟萃分析)
在这里插入图片描述
吸烟其实没什么创意,唯一的新意就是加入了孟德尔随机化和meta分析。我们可以看到文章的类型就是meta分析,说明孟德尔随机化+meta分析的本质就是个meta分析。作者先是介绍说吸烟与多种疾病之间的因果关系仍然不明确,目的是通过总结孟德尔随机化 (MR) 研究的证据来评估吸烟在多种疾病中的因果作用。
咱们看下它的方法学是怎么做的:
在这里插入图片描述

完全是meta分析的套路,分两步提取数据,
第一步:是搜索各大数据库“孟德尔随机化”与“吸烟”的相关文章,把文章中吸烟和疾病的关系的数据提取出来。纳入标准:原始全文文章,介绍了吸烟或终身吸烟的遗传易感性与一种或多种循环、消化、神经和肌肉骨骼系统疾病、内分泌、代谢和眼部疾病或肿瘤风险的关联结果。一共纳入了385篇文章。排除标准:基于相同或重叠研究样本的重复出版物,以及仅使用单一或少数(<10)尼古丁依赖或吸烟行为或数量的工具变量的研究。作者这里提取了年份,样本量,关系的比值比OR。经过排除后适合分析的有29篇。
第二步:有一部分数据就是芬兰基因研究(FinnGen)作者通过检索没有检索到资料,他就自己来做,他使用了 R6版本中的数据进行孟德尔随机化分析,其中包括 260 405 名芬兰人,但剔除了性别不明确、非芬兰血统、基因型缺失率超过 5%、或杂合度过高(±4 个标准差)的数据。此外,作者还利用 GWAS meta 分析中公开的汇总统计数据,对骨关节炎、痛风和原发性开角型青光眼进行了从头开始的 MR 分析。第二部分提取到的数据应该是27篇,因为最后供56篇文章。
下面是他的流程图:
流程图:
在这里插入图片描述
通过流程图咱们可以知道最后作者得到14篇循环疾病的文章,消化疾病8篇,神经系统疾病5篇,肌肉骨骼系统4篇,2篇内分泌,3篇眼科疾病,21篇关于肿瘤的文章。整个过程处理起来还是挺花时间的,毕竟要一篇篇的读,提取数据。
接下来咱们看看作者提供的数据,附表1是作者自己做的孟德尔随机化的结果,它的结果有两个,一个是刚开始吸烟,还有一个是终生吸烟。作者也是根据这两个结果进行meta分析的。
在这里插入图片描述

在这里插入图片描述
接下来就是作者的两个主表了,表2是开始吸烟的人的疾病分析,表3是终生吸烟的人的疾病分析,作者就是根据这两个表来做meta分析的,下面我把数据提取出来跑一下。
在这里插入图片描述
在这里插入图片描述
下面我把数据提取出来跑一下,数据量挺大的我就提取刚开始吸烟的患者循环疾病这部分举个例子,其他疾病的都是一样的。这里我们要注意一下,循环系统是有很多疾病的,就拿心房颤动这个疾病来说,作者的数据很多很大,他是把GWAS meta-analysis、FinnGen这2个数据库的结果进行相加,再来做meta分析,如果你的数据没有这么大,你把每个数据库先分别做,然后再汇总也是可以的。

bc<-read.csv("E:/r/test/smokemeta.csv",sep=',',header=TRUE)
names(bc)

数据提取出来后下图这个样子,这个数据可以按作者的方法进行提取,如果你想偷懒一点,使用我提取好的数据,公众号回复:代码,可以得到。
在这里插入图片描述
既往咱们已经介绍了《R语言forestploter包优雅的绘制孟德尔随机化研究森林图》,需要的可以自己看一下。今天咱们来介绍一下forestplot包绘制这个森林图,这个包相对简单一点,容易上手。

library(forestplot)

咱们先生成个可信区间

bc$`OR (95% CI)` <- sprintf("%.2f (%.2f to %.2f)", bc$OR, bc$LB, bc$UB)

在这里插入图片描述
生成可信区间后我们需要生成一个绘图区间,选择你需要的变量就可以了,我这里选1,2,6

dt1<-as.matrix(bc[,c(1,2,6)])

在这里插入图片描述
这里注意一下,dt这个数据是矩阵没有列名,我们还要生成一个列名

dt1 <- rbind(c("outcome","Cases","OR (95% CI)"),dt1)

在这里插入图片描述
这样的数据就可以绘图了

forestplot(labeltext=dt1,graph.pos="right", mean=c(NA,bc$OR),lower=c(NA,bc$LB),upper=c(NA,bc$UB),graphwidth = unit(60,"mm"),#设置图片位置和宽度boxsize =0.2,line.margin = unit(5,"mm"),#对散点和线条进行设置lineheight = unit(5,"mm"),#设置图形行距col=fpColors(box = "grey0",lines = "grey0",summary = "grey0"),colgap = unit(1,"mm"),#图形列间距zero = 1,#参照值xticks = c(0,1,2))#X轴的定义标签

在这里插入图片描述
咱们可以看到和作者做的几乎一模一样
在这里插入图片描述
为什么我说几乎一模一样,因为还是有点不一样的,作者没有11278肺栓塞这个数据,但是它的原数据是有的,估计绘图时忘记加进去了
在这里插入图片描述
绘图出来了,还有一个东西没有解决。有些论文是有报meta分析的I(异质性)和P值的,这个怎么求出来呢?
在这里插入图片描述
在这里插入图片描述
这个两个值作者文章推荐使用stata来计算,stata做meta分析简单了许多, 使用metan函数就行

metan or lb ub

在这里插入图片描述
在这里插入图片描述
图片还可以修改,我这里不弄了。最终算得I为80.6%,P为0.00,可能和作者有点不同,因为他少加了一个研究。最后作者还做了敏感性分析,是通过孟德尔随机化来做的,不是所有的文章都做,下面这篇文章就没做敏感性分析。
在这里插入图片描述
我这里就不弄了,有兴趣看我既往的文章。

这篇关于R语言进行孟德尔随机化+meta分析(2)----基于R和stata的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/22

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Nginx设置连接超时并进行测试的方法步骤

《Nginx设置连接超时并进行测试的方法步骤》在高并发场景下,如果客户端与服务器的连接长时间未响应,会占用大量的系统资源,影响其他正常请求的处理效率,为了解决这个问题,可以通过设置Nginx的连接... 目录设置连接超时目的操作步骤测试连接超时测试方法:总结:设置连接超时目的设置客户端与服务器之间的连接

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

SpringBoot中使用 ThreadLocal 进行多线程上下文管理及注意事项小结

《SpringBoot中使用ThreadLocal进行多线程上下文管理及注意事项小结》本文详细介绍了ThreadLocal的原理、使用场景和示例代码,并在SpringBoot中使用ThreadLo... 目录前言技术积累1.什么是 ThreadLocal2. ThreadLocal 的原理2.1 线程隔离2

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Go语言中三种容器类型的数据结构详解

《Go语言中三种容器类型的数据结构详解》在Go语言中,有三种主要的容器类型用于存储和操作集合数据:本文主要介绍三者的使用与区别,感兴趣的小伙伴可以跟随小编一起学习一下... 目录基本概念1. 数组(Array)2. 切片(Slice)3. 映射(Map)对比总结注意事项基本概念在 Go 语言中,有三种主要

Python利用PIL进行图片压缩

《Python利用PIL进行图片压缩》有时在发送一些文件如PPT、Word时,由于文件中的图片太大,导致文件也太大,无法发送,所以本文为大家介绍了Python中图片压缩的方法,需要的可以参考下... 有时在发送一些文件如PPT、Word时,由于文件中的图片太大,导致文件也太大,无法发送,所有可以对文件中的图