R语言进行孟德尔随机化+meta分析(2)----基于R和stata

2023-09-29 14:11

本文主要是介绍R语言进行孟德尔随机化+meta分析(2)----基于R和stata,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目前不少文章用到了孟德尔随机化+meta分析,在上一章咱们简单介绍了一下meta分析的基础知识。咱们今天来介绍一篇11分文章,由文章看看孟德尔随机化+meta分析如何进行,文章的题目是:Appraising the causal role of smoking in multiple diseases: A systematic review and meta-analysis of Mendelian randomization studies(评估吸烟在多种疾病中的因果作用:孟德尔随机研究的系统回顾和荟萃分析)
在这里插入图片描述
吸烟其实没什么创意,唯一的新意就是加入了孟德尔随机化和meta分析。我们可以看到文章的类型就是meta分析,说明孟德尔随机化+meta分析的本质就是个meta分析。作者先是介绍说吸烟与多种疾病之间的因果关系仍然不明确,目的是通过总结孟德尔随机化 (MR) 研究的证据来评估吸烟在多种疾病中的因果作用。
咱们看下它的方法学是怎么做的:
在这里插入图片描述

完全是meta分析的套路,分两步提取数据,
第一步:是搜索各大数据库“孟德尔随机化”与“吸烟”的相关文章,把文章中吸烟和疾病的关系的数据提取出来。纳入标准:原始全文文章,介绍了吸烟或终身吸烟的遗传易感性与一种或多种循环、消化、神经和肌肉骨骼系统疾病、内分泌、代谢和眼部疾病或肿瘤风险的关联结果。一共纳入了385篇文章。排除标准:基于相同或重叠研究样本的重复出版物,以及仅使用单一或少数(<10)尼古丁依赖或吸烟行为或数量的工具变量的研究。作者这里提取了年份,样本量,关系的比值比OR。经过排除后适合分析的有29篇。
第二步:有一部分数据就是芬兰基因研究(FinnGen)作者通过检索没有检索到资料,他就自己来做,他使用了 R6版本中的数据进行孟德尔随机化分析,其中包括 260 405 名芬兰人,但剔除了性别不明确、非芬兰血统、基因型缺失率超过 5%、或杂合度过高(±4 个标准差)的数据。此外,作者还利用 GWAS meta 分析中公开的汇总统计数据,对骨关节炎、痛风和原发性开角型青光眼进行了从头开始的 MR 分析。第二部分提取到的数据应该是27篇,因为最后供56篇文章。
下面是他的流程图:
流程图:
在这里插入图片描述
通过流程图咱们可以知道最后作者得到14篇循环疾病的文章,消化疾病8篇,神经系统疾病5篇,肌肉骨骼系统4篇,2篇内分泌,3篇眼科疾病,21篇关于肿瘤的文章。整个过程处理起来还是挺花时间的,毕竟要一篇篇的读,提取数据。
接下来咱们看看作者提供的数据,附表1是作者自己做的孟德尔随机化的结果,它的结果有两个,一个是刚开始吸烟,还有一个是终生吸烟。作者也是根据这两个结果进行meta分析的。
在这里插入图片描述

在这里插入图片描述
接下来就是作者的两个主表了,表2是开始吸烟的人的疾病分析,表3是终生吸烟的人的疾病分析,作者就是根据这两个表来做meta分析的,下面我把数据提取出来跑一下。
在这里插入图片描述
在这里插入图片描述
下面我把数据提取出来跑一下,数据量挺大的我就提取刚开始吸烟的患者循环疾病这部分举个例子,其他疾病的都是一样的。这里我们要注意一下,循环系统是有很多疾病的,就拿心房颤动这个疾病来说,作者的数据很多很大,他是把GWAS meta-analysis、FinnGen这2个数据库的结果进行相加,再来做meta分析,如果你的数据没有这么大,你把每个数据库先分别做,然后再汇总也是可以的。

bc<-read.csv("E:/r/test/smokemeta.csv",sep=',',header=TRUE)
names(bc)

数据提取出来后下图这个样子,这个数据可以按作者的方法进行提取,如果你想偷懒一点,使用我提取好的数据,公众号回复:代码,可以得到。
在这里插入图片描述
既往咱们已经介绍了《R语言forestploter包优雅的绘制孟德尔随机化研究森林图》,需要的可以自己看一下。今天咱们来介绍一下forestplot包绘制这个森林图,这个包相对简单一点,容易上手。

library(forestplot)

咱们先生成个可信区间

bc$`OR (95% CI)` <- sprintf("%.2f (%.2f to %.2f)", bc$OR, bc$LB, bc$UB)

在这里插入图片描述
生成可信区间后我们需要生成一个绘图区间,选择你需要的变量就可以了,我这里选1,2,6

dt1<-as.matrix(bc[,c(1,2,6)])

在这里插入图片描述
这里注意一下,dt这个数据是矩阵没有列名,我们还要生成一个列名

dt1 <- rbind(c("outcome","Cases","OR (95% CI)"),dt1)

在这里插入图片描述
这样的数据就可以绘图了

forestplot(labeltext=dt1,graph.pos="right", mean=c(NA,bc$OR),lower=c(NA,bc$LB),upper=c(NA,bc$UB),graphwidth = unit(60,"mm"),#设置图片位置和宽度boxsize =0.2,line.margin = unit(5,"mm"),#对散点和线条进行设置lineheight = unit(5,"mm"),#设置图形行距col=fpColors(box = "grey0",lines = "grey0",summary = "grey0"),colgap = unit(1,"mm"),#图形列间距zero = 1,#参照值xticks = c(0,1,2))#X轴的定义标签

在这里插入图片描述
咱们可以看到和作者做的几乎一模一样
在这里插入图片描述
为什么我说几乎一模一样,因为还是有点不一样的,作者没有11278肺栓塞这个数据,但是它的原数据是有的,估计绘图时忘记加进去了
在这里插入图片描述
绘图出来了,还有一个东西没有解决。有些论文是有报meta分析的I(异质性)和P值的,这个怎么求出来呢?
在这里插入图片描述
在这里插入图片描述
这个两个值作者文章推荐使用stata来计算,stata做meta分析简单了许多, 使用metan函数就行

metan or lb ub

在这里插入图片描述
在这里插入图片描述
图片还可以修改,我这里不弄了。最终算得I为80.6%,P为0.00,可能和作者有点不同,因为他少加了一个研究。最后作者还做了敏感性分析,是通过孟德尔随机化来做的,不是所有的文章都做,下面这篇文章就没做敏感性分析。
在这里插入图片描述
我这里就不弄了,有兴趣看我既往的文章。

这篇关于R语言进行孟德尔随机化+meta分析(2)----基于R和stata的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/22

相关文章

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip

Java使用Curator进行ZooKeeper操作的详细教程

《Java使用Curator进行ZooKeeper操作的详细教程》ApacheCurator是一个基于ZooKeeper的Java客户端库,它极大地简化了使用ZooKeeper的开发工作,在分布式系统... 目录1、简述2、核心功能2.1 CuratorFramework2.2 Recipes3、示例实践3

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3

找不到Anaconda prompt终端的原因分析及解决方案

《找不到Anacondaprompt终端的原因分析及解决方案》因为anaconda还没有初始化,在安装anaconda的过程中,有一行是否要添加anaconda到菜单目录中,由于没有勾选,导致没有菜... 目录问题原因问http://www.chinasem.cn题解决安装了 Anaconda 却找不到 An

Spring定时任务只执行一次的原因分析与解决方案

《Spring定时任务只执行一次的原因分析与解决方案》在使用Spring的@Scheduled定时任务时,你是否遇到过任务只执行一次,后续不再触发的情况?这种情况可能由多种原因导致,如未启用调度、线程... 目录1. 问题背景2. Spring定时任务的基本用法3. 为什么定时任务只执行一次?3.1 未启用

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Python使用date模块进行日期处理的终极指南

《Python使用date模块进行日期处理的终极指南》在处理与时间相关的数据时,Python的date模块是开发者最趁手的工具之一,本文将用通俗的语言,结合真实案例,带您掌握date模块的六大核心功能... 目录引言一、date模块的核心功能1.1 日期表示1.2 日期计算1.3 日期比较二、六大常用方法详

Python使用DrissionPage中ChromiumPage进行自动化网页操作

《Python使用DrissionPage中ChromiumPage进行自动化网页操作》DrissionPage作为一款轻量级且功能强大的浏览器自动化库,为开发者提供了丰富的功能支持,本文将使用Dri... 目录前言一、ChromiumPage基础操作1.初始化Drission 和 ChromiumPage

C语言中的数据类型强制转换

《C语言中的数据类型强制转换》:本文主要介绍C语言中的数据类型强制转换方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C语言数据类型强制转换自动转换强制转换类型总结C语言数据类型强制转换强制类型转换:是通过类型转换运算来实现的,主要的数据类型转换分为自动转换

利用Go语言开发文件操作工具轻松处理所有文件

《利用Go语言开发文件操作工具轻松处理所有文件》在后端开发中,文件操作是一个非常常见但又容易出错的场景,本文小编要向大家介绍一个强大的Go语言文件操作工具库,它能帮你轻松处理各种文件操作场景... 目录为什么需要这个工具?核心功能详解1. 文件/目录存javascript在性检查2. 批量创建目录3. 文件