linux质控命令,Biostar_handbook||Charpter_6789_数据的格式_获取_质控_seqkit

本文主要是介绍linux质控命令,Biostar_handbook||Charpter_6789_数据的格式_获取_质控_seqkit,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Charpter6:数据的格式Data Formats

常用数据库

NCBI

EBI

Uniprot

Phytozome

Ensemble plants

TAIR

PlantGDB

PlantTFDB 植物转录因子数据库

这些是我目前常用的一些数据库,可以看出来我是做植物的。其实植物领域还有许多重要的数据库,更不必说动物的了,各个物种都能拿出来做个数据库。数据这么多,如何更加高效的从数据库中实现你想要的目的是门学问。而自己目前对这些数据库知道的也只是初步的一些东西。其实除了NCBI外很多重要的数据库都有一些很实用的功能,但是却缺少教程指导推广,以后有机会可以再对一些数据库的功能进行探索探索。

数据格式

1. GeneBank format

最常见的生物数据存储方式FASTA,GeneBank, FASTQ,前两者被称为curated sequence information.

Genebank/gb格式文件为NCBI存储基因信息的格式。其中NCBI里的RefSeq数据库为标准非冗余的基因数据库.(It provides the Sequences Record and Baseline for biological studies and it's a non-redundant set of reference standards derived)

0abce878c1a1?utm_campaign=maleskine&utm_content=note&utm_medium=seo_notes&utm_source=recommendation

用readseq对gb数据转换:

efetch -db=nuccore -format=gb -id=AF086833 > AF086833.gb

###转gb到cds序列fasta序列

readseq -p -format=FASTA AF086833.gb ## complete genome seq

readseq -p -format=FASTA -feat=CDS AF086833.gb

readseq -p -format=GFF AF086833.gb

readseq -p -format=GFF -field=CDS AF086833.gb

2. FASTA

就是第一行以'>'开始的序列的各种信息,第二行具体atgc

3. FASTQ

二代测序数据存储格式,第一行'@',第二行''序列,第三行'+或者序列信息'',第四行测序的数据质量。

Charpter 7: 获取序列How to get DATA

1. 通过LINUX系统直接从NCBI上下载数据

### 以genebank格式序列下载

efetch -db=nuccore -format=gb -id=AF086833 > AF086833.gb

### 以fatst格式下载序列

efetch -db=nuccore -format=fasta -id=AF086833 > AF086833.fasta

### 取序列的某一段

efetch -db=nuccore -format=fasta -id=AF086833 -seq_start=1 -seq_stop=100

## 互补序列

-strand 1

-strand 2

通过对文章里的project accession 号来下载数据,以PRJNA257197为例子**

esearch -db nucleotide -query PRJNA257197

esearch -db nucleotide -query PRJNA257197 | efetch -format=fasta > genomes.fa

-db=protein

2. 下载SRA数据库数据

SRA数据库(short read Archive):数据存储的格式

Bioproject:PRJN开头,研究项目的介绍

BioSample:SRS/SRMN开头,生物样品来源的介绍

SRA Experiment: 单独样本的测序文库

SRR Run:直接相关数据存储格式

==根据eseach 和 efetch直接下载数据== (都不用各种网站点了,实用下载数据新技能!!!)

esearch -db sra -query SRP020911 | efetch -format runinfo >SRP020911.csv

## 查看csv第一行标题信息

head -1 SRP020911.csv |tr ',' '\n'|nl ### 第一列为 SRR信息号,第十列为SRR的下载地址

### 获取SRR的信息号,SRR下载地址

cat SRP020911.csv| tail -n +2 | cut -d, -f 1

tail -n +2 | cut -d, -f 10

### 结合xargs直接完成数据的下载:

cat SRP020911.csv| tail -n +2 | cut -d, -f 1 | xargs -i prefetch {}

cat SRP020911.csv| tail -n +2 | cut -d, -f 10 | xargs -i echo wget {} \&

3. 对Seqkit工具的应用

对fq文件基本情况统计seqkit stat *.gz

统计每个序列的GC情况 seqkit fx2tab --name --only-id --gc *.gz

==根据id号提取序列==

### 随机创造个id列表

seqkit sample -p 0.001 duplicated-reads.fq.gz |seqkit seq --name --only-id > id.txt

###根据id列表提取序列

seqkit grep --pattern-file id.txt duplicated-reads.fq.gz

或者-f参数

### 提取目标序列

seqkit grep -p "AT1G30490.1" ath.pep.fa

去除掉含有简并碱基的序列如N/K等

### 生成含有简并碱基序列的id

seqkit fx2tab -n -i -a viral.1.1.genomic.fna.gz | csvtk -H -t grep -f 4 -r -i -p "[^ACGT]" | csvtk -H -t cut -f 1 > id.txt

### 去除id.txt,即反向匹配。

seqkit grep --pattern-file id.txt --invert-match viral.1.1.genomic.fna.gz > clean.fa

### 定位这些含有简并碱基的序列。

seqkit grep -f id2.txt viral.1.1.genomic.fna.gz |seqkit locate -i -P --pattern K+ --pattern N+

定位motif

## 以文件中的motif为标准定位

seqkit locate --degenerate --ignore-case --pattern-file enzymes.fa viral.1.1.genomic.fna.gz

### 根据自己的指定的motif序列定位,可包含简并碱基

seqkit locate -i -d -p CHWWWWWWDG seq.fa

根据序列的长短从小到大排序

seqkit sort --by-length virus.fna.gz > virus.genomics.sorted.fa

文件过大用 --two-pass

Charpter 8:二代三代测序数据基本信息Sequencing instruments

DNA sequencing at 40: past, present and future

0abce878c1a1?utm_campaign=maleskine&utm_content=note&utm_medium=seo_notes&utm_source=recommendation

1. 测序仪器

一代测序:Sanger法,利用加不同荧光的双脱氧核苷酸ddNTP会中止PCR。

速度快,一次只能一条,1000bp~1500bp左右

二代测序:以Illumina为代表边合成边测序。对随机打断成150~300bp的短片段 +上固定碱基的接头(adapter)+标签(tag/index)。

由于建库中利用了PCR富集序列,因此有一些量少的序列无法被大量扩增,造成一些信息的丢失,且PCR中有概率会引入错配的碱基

三代测序:

单分子荧光测序(SMRT):

纳米孔测序

无需扩增,基于纳米科技,对单分子链DNA/RNA直接用合成/降解/通过纳米孔等方式直接测序

2. 错误率

ILLUMINA 0.1%的错误率,理论上一条序列的测序准确度是递减的,也就是前面准确度高,后面低。且在一些GC率高的区域,测序质量会显著降低。

PacBio 10%的错误率

MinION :最高达到20%的错误率,且错误多为固定错误,无法通过测序深度来矫正。

可以看到三代测序的数据错误率都很高,所以常需要加测二代的数据来对三代数据矫正。

Charpter 9:测序质控

分为两步:第一步FastQC/MultiQC展示测序的质量;第二步Trimmomatic/fastp去除低质量序列

1. FastQC/MultiQC 显示测序质量

### 下载数据

wget http://data.biostarhandbook.com/data/sequencing-platform-data.tar.gz

tar xzvf sequencing-platform-data.tar.gz

### 直接fastqc显示测序质量

ls *.fq.gz |parallel fastqc -o ./ --nogroup {} &

### MultiQC批量显示测序的质量

##在已经用fastqc得到测序的html文件和zip文件夹

multiqc *fastqc.zip --pdf

在运行过程中曾出现too many levels 错误,需要调用fastqc软件的绝对地址来运行程序

2. Trimmomatic/fastp质量控制

用Trimmomatic 从5‘端开始切除低质量碱基(LEADING:5)TRAILING:20表示切除碱基质量小于20的碱基,MINLEN:50表示过滤切除后长度小于50个碱基的reads

滑动窗口:SLIDINGWINDOW:3:20表示设置窗口大小为3个碱基,从5'端开始切除reads,read的平均质量低于20,开始切除后边的碱基序列。过滤长度小于50碱基的reads,使用更大的窗口可以减轻切除的力度

trimmomatic PE SRR11111_1.fq SRR11111_2.fq trimmed_1.fq unpaired_1.fq trimmed_2.fq unpaired_2.fq ILLUMINACLIP:/home/wangtianpeng/anaconda3/share/trimmomatic-0.36-5/adapters/TruSeq3-PE-2.fa:2:30:10 LEADING:5 TRAILING:5 SLIDINGWINDOW:4:5 MINLEN:20

trimmomatic PE SRR1553607_1.fastq SRR1553607_2.fastq trimmed_1.fq unpaired_1.fq trimmed_2.fq unpaired_2.fq SLIDINGWINDOW:4:30

去除特定的adapter

cat ~/miniconda3/envs/bioinfo/opt/fastqc-0.11.5/Configuration/adapter_list.txt

echo ">nextera" > nextera.fa

echo "CTGTCTCTTATACACATCTCCGAGCCCACGAGAC" >> nextera.fa

## 最后加上ILLUMINACLIP:参数

ILLUMINACLIP:adapter.fa:2:30:5

一键化软件fastp

###一键化输出

fastp -i in.R1.fq -o out.R1.fq -I in.R2.fq -O out.R2.fq

### 默认自动化去接头,如果不需要参数-A

### PE 数据的碱基校正 PE 数据的每一对 read 进行分析,查找它们的 overlap 区间,然后对于 overlap 区间中不一致的碱基,如果发现其中一个质量非常高,而另一个非常低,则可以将非常低质量的碱基改为相应的非常高质量值的碱基值

-c 参数使用

fastp -q 30 -5 -l 100 -i il_1.fq.gz -I il_2.fq.gz -o i1_clean_1.fq -O i1_clean_2.fq

这里标准为:平均质量高于Q30,对5‘端进行低质量碱基删除,保留大于100bp的短读。

fastp -3 -W 4 -M 20 -a AGATCGGAAGAG -i $i.fastq.gz -o ../clean_data/fastp_out_2.0/$i.qc.fq.gz

对3'端低质量碱基删除,-W -M 为sliding window参数 -a 指定接头序列

这篇关于linux质控命令,Biostar_handbook||Charpter_6789_数据的格式_获取_质控_seqkit的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/219259

相关文章

Linux中shell解析脚本的通配符、元字符、转义符说明

《Linux中shell解析脚本的通配符、元字符、转义符说明》:本文主要介绍shell通配符、元字符、转义符以及shell解析脚本的过程,通配符用于路径扩展,元字符用于多命令分割,转义符用于将特殊... 目录一、linux shell通配符(wildcard)二、shell元字符(特殊字符 Meta)三、s

Linux之软件包管理器yum详解

《Linux之软件包管理器yum详解》文章介绍了现代类Unix操作系统中软件包管理和包存储库的工作原理,以及如何使用包管理器如yum来安装、更新和卸载软件,文章还介绍了如何配置yum源,更新系统软件包... 目录软件包yumyum语法yum常用命令yum源配置文件介绍更新yum源查看已经安装软件的方法总结软

linux报错INFO:task xxxxxx:634 blocked for more than 120 seconds.三种解决方式

《linux报错INFO:taskxxxxxx:634blockedformorethan120seconds.三种解决方式》文章描述了一个Linux最小系统运行时出现的“hung_ta... 目录1.问题描述2.解决办法2.1 缩小文件系统缓存大小2.2 修改系统IO调度策略2.3 取消120秒时间限制3

Linux alias的三种使用场景方式

《Linuxalias的三种使用场景方式》文章介绍了Linux中`alias`命令的三种使用场景:临时别名、用户级别别名和系统级别别名,临时别名仅在当前终端有效,用户级别别名在当前用户下所有终端有效... 目录linux alias三种使用场景一次性适用于当前用户全局生效,所有用户都可调用删除总结Linux

Linux:alias如何设置永久生效

《Linux:alias如何设置永久生效》在Linux中设置别名永久生效的步骤包括:在/root/.bashrc文件中配置别名,保存并退出,然后使用source命令(或点命令)使配置立即生效,这样,别... 目录linux:alias设置永久生效步骤保存退出后功能总结Linux:alias设置永久生效步骤

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

在C#中获取端口号与系统信息的高效实践

《在C#中获取端口号与系统信息的高效实践》在现代软件开发中,尤其是系统管理、运维、监控和性能优化等场景中,了解计算机硬件和网络的状态至关重要,C#作为一种广泛应用的编程语言,提供了丰富的API来帮助开... 目录引言1. 获取端口号信息1.1 获取活动的 TCP 和 UDP 连接说明:应用场景:2. 获取硬

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat