斯坦福CS231n assignment1:SVM图像分类原理及实现

2023-10-15 03:58

本文主要是介绍斯坦福CS231n assignment1:SVM图像分类原理及实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

斯坦福CS231n assignment1:SVM图像分类原理及实现

  • SVM模型原理
  • SVM的一种直观解释
  • 损失函数
  • 损失函数加入正则化项
  • 梯度下降和梯度检验
  • 图像预处理
  • 小批量数据梯度下降(Mini-batch gradient descent)
  • 代码实现

分类
本文Github代码

斯坦福CS231n课程讲解了实现图像分类的方法,从传统的KNN,SVM,到CNN,LSTM模型,讲解的非常专业精准。同时该课程提供了相应的习题来检验和巩固讲授的知识,如果能按部就班的完成,对神经网络将会有深刻的体会和理解。本文将结合代码实现讲解其中的SVM方法实现图像分类的原理和方法,以及需要注意的知识细节。

SVM模型原理

SVM通过平面将空间中的实例划分到不同的类别,从而实现分类。这里的空间包括二维空间,三维空间,一直到高维空间,具体的维数等于实例的特征数量,如果我们待分类的图片是32*32*3(长宽分别是32个像素,RGB3个颜色通道)维的,那么图片所处的空间就是3072维的空间。在这个高维空间,我们通过由权重向量W和偏置项b确定的一个(实际上是一组)超平面来将图片进行分类。为了可视化,我们将多维空间压缩到二维空间,那么就是下面的图像:
通过超平面进行分类

这里每一个平面都将整个高维空间划分成两部分,平面的一侧是某一类图片,另一侧是这个类别之外的其他图片。比如红色的平面一侧是汽车这个类别,另一侧是非汽车类别。每一个类别都对应一个平面,这些平面互相之间不存在关联,利用SVM模型进行分类的目的就是确定这样一组平面,使得同一类尽可能划分在该类对应的平面的一侧,其他类尽可能在另一侧,而且两种类别离平面的距离越大越好(平面尽可能把两类分的更开),这是SVM模型的思路。

所有这些类别对应的平面通过下面的矩阵唯一确定:
线性映射矩阵

其中改变W可以使平面旋转,而改变b使平面平移。如果b为0,此时W*0=0,那么平面会经过原点。

SVM的一种直观解释

SVM模型用于图像分类可以看做给每一种图像的类别生成一个图像模板,然后拿待分类的图像和这个图像模板做内积,计算他们的相似度,相似度最高的类别就是分类类别。根据这个思想,生成的权重向量可视化如下:

图像模板

可以看出,这些图像模板比较能够代表某种类别的共性,比如car类别是一辆红色的车的形象,而horse类型是左右两匹马的形象,这些是集合了所有训练样本得出的模板。从这个角度,SVM可以看做KNN模型的一种简化,KNN模型对一张图片分类时需要和所有训练样本做比较,而SVM只需要和抽象出来的每个类别下的一个图像模板做比较即可,显然更高效。

损失函数

SVM模型有多种不同的实现,区别主要体现在损失函数的定义上,可以根据实现分为:

  1. 经典SVM
  2. Structured SVM

其中经典SVM模型核心思路是找一个超平面将不同类别分开,同时使得离超平面最近的点的距离最大,这样能保证即使是最难区分的点,也有较大的确信度将它

这篇关于斯坦福CS231n assignment1:SVM图像分类原理及实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/215187

相关文章

Python实现终端清屏的几种方式详解

《Python实现终端清屏的几种方式详解》在使用Python进行终端交互式编程时,我们经常需要清空当前终端屏幕的内容,本文为大家整理了几种常见的实现方法,有需要的小伙伴可以参考下... 目录方法一:使用 `os` 模块调用系统命令方法二:使用 `subprocess` 模块执行命令方法三:打印多个换行符模拟

SpringBoot+EasyPOI轻松实现Excel和Word导出PDF

《SpringBoot+EasyPOI轻松实现Excel和Word导出PDF》在企业级开发中,将Excel和Word文档导出为PDF是常见需求,本文将结合​​EasyPOI和​​Aspose系列工具实... 目录一、环境准备与依赖配置1.1 方案选型1.2 依赖配置(商业库方案)二、Excel 导出 PDF

Python实现MQTT通信的示例代码

《Python实现MQTT通信的示例代码》本文主要介绍了Python实现MQTT通信的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 安装paho-mqtt库‌2. 搭建MQTT代理服务器(Broker)‌‌3. pytho

基于Python开发一个图像水印批量添加工具

《基于Python开发一个图像水印批量添加工具》在当今数字化内容爆炸式增长的时代,图像版权保护已成为创作者和企业的核心需求,本方案将详细介绍一个基于PythonPIL库的工业级图像水印解决方案,有需要... 目录一、系统架构设计1.1 整体处理流程1.2 类结构设计(扩展版本)二、核心算法深入解析2.1 自

使用zip4j实现Java中的ZIP文件加密压缩的操作方法

《使用zip4j实现Java中的ZIP文件加密压缩的操作方法》本文介绍如何通过Maven集成zip4j1.3.2库创建带密码保护的ZIP文件,涵盖依赖配置、代码示例及加密原理,确保数据安全性,感兴趣的... 目录1. zip4j库介绍和版本1.1 zip4j库概述1.2 zip4j的版本演变1.3 zip4

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

Spring StateMachine实现状态机使用示例详解

《SpringStateMachine实现状态机使用示例详解》本文介绍SpringStateMachine实现状态机的步骤,包括依赖导入、枚举定义、状态转移规则配置、上下文管理及服务调用示例,重点解... 目录什么是状态机使用示例什么是状态机状态机是计算机科学中的​​核心建模工具​​,用于描述对象在其生命

Spring Boot 结合 WxJava 实现文章上传微信公众号草稿箱与群发

《SpringBoot结合WxJava实现文章上传微信公众号草稿箱与群发》本文将详细介绍如何使用SpringBoot框架结合WxJava开发工具包,实现文章上传到微信公众号草稿箱以及群发功能,... 目录一、项目环境准备1.1 开发环境1.2 微信公众号准备二、Spring Boot 项目搭建2.1 创建

IntelliJ IDEA2025创建SpringBoot项目的实现步骤

《IntelliJIDEA2025创建SpringBoot项目的实现步骤》本文主要介绍了IntelliJIDEA2025创建SpringBoot项目的实现步骤,文中通过示例代码介绍的非常详细,对大家... 目录一、创建 Spring Boot 项目1. 新建项目2. 基础配置3. 选择依赖4. 生成项目5.

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录