斯坦福CS231n assignment1:SVM图像分类原理及实现

2023-10-15 03:58

本文主要是介绍斯坦福CS231n assignment1:SVM图像分类原理及实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

斯坦福CS231n assignment1:SVM图像分类原理及实现

  • SVM模型原理
  • SVM的一种直观解释
  • 损失函数
  • 损失函数加入正则化项
  • 梯度下降和梯度检验
  • 图像预处理
  • 小批量数据梯度下降(Mini-batch gradient descent)
  • 代码实现

分类
本文Github代码

斯坦福CS231n课程讲解了实现图像分类的方法,从传统的KNN,SVM,到CNN,LSTM模型,讲解的非常专业精准。同时该课程提供了相应的习题来检验和巩固讲授的知识,如果能按部就班的完成,对神经网络将会有深刻的体会和理解。本文将结合代码实现讲解其中的SVM方法实现图像分类的原理和方法,以及需要注意的知识细节。

SVM模型原理

SVM通过平面将空间中的实例划分到不同的类别,从而实现分类。这里的空间包括二维空间,三维空间,一直到高维空间,具体的维数等于实例的特征数量,如果我们待分类的图片是32*32*3(长宽分别是32个像素,RGB3个颜色通道)维的,那么图片所处的空间就是3072维的空间。在这个高维空间,我们通过由权重向量W和偏置项b确定的一个(实际上是一组)超平面来将图片进行分类。为了可视化,我们将多维空间压缩到二维空间,那么就是下面的图像:
通过超平面进行分类

这里每一个平面都将整个高维空间划分成两部分,平面的一侧是某一类图片,另一侧是这个类别之外的其他图片。比如红色的平面一侧是汽车这个类别,另一侧是非汽车类别。每一个类别都对应一个平面,这些平面互相之间不存在关联,利用SVM模型进行分类的目的就是确定这样一组平面,使得同一类尽可能划分在该类对应的平面的一侧,其他类尽可能在另一侧,而且两种类别离平面的距离越大越好(平面尽可能把两类分的更开),这是SVM模型的思路。

所有这些类别对应的平面通过下面的矩阵唯一确定:
线性映射矩阵

其中改变W可以使平面旋转,而改变b使平面平移。如果b为0,此时W*0=0,那么平面会经过原点。

SVM的一种直观解释

SVM模型用于图像分类可以看做给每一种图像的类别生成一个图像模板,然后拿待分类的图像和这个图像模板做内积,计算他们的相似度,相似度最高的类别就是分类类别。根据这个思想,生成的权重向量可视化如下:

图像模板

可以看出,这些图像模板比较能够代表某种类别的共性,比如car类别是一辆红色的车的形象,而horse类型是左右两匹马的形象,这些是集合了所有训练样本得出的模板。从这个角度,SVM可以看做KNN模型的一种简化,KNN模型对一张图片分类时需要和所有训练样本做比较,而SVM只需要和抽象出来的每个类别下的一个图像模板做比较即可,显然更高效。

损失函数

SVM模型有多种不同的实现,区别主要体现在损失函数的定义上,可以根据实现分为:

  1. 经典SVM
  2. Structured SVM

其中经典SVM模型核心思路是找一个超平面将不同类别分开,同时使得离超平面最近的点的距离最大,这样能保证即使是最难区分的点,也有较大的确信度将它

这篇关于斯坦福CS231n assignment1:SVM图像分类原理及实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/215187

相关文章

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

hdu4407(容斥原理)

题意:给一串数字1,2,......n,两个操作:1、修改第k个数字,2、查询区间[l,r]中与n互质的数之和。 解题思路:咱一看,像线段树,但是如果用线段树做,那么每个区间一定要记录所有的素因子,这样会超内存。然后我就做不来了。后来看了题解,原来是用容斥原理来做的。还记得这道题目吗?求区间[1,r]中与p互质的数的个数,如果不会的话就先去做那题吧。现在这题是求区间[l,r]中与n互质的数的和

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount