游戏中的随机——“动态平衡概率”算法

2023-10-14 10:36

本文主要是介绍游戏中的随机——“动态平衡概率”算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

众所周知计算机模拟的随机是伪随机,但在结果看来依然和现实中的随机差别不大。
例如掷硬币,连续掷很多很多次之后,总有连续七八十来次同一个面朝上的情况出现,计算机中一般的随机函数也能很好模拟这一点。

但在游戏中,假如有一个50%概率会出现的情况,经常却连续七八十来次不出现,这样其实非常影响游戏体验。

那么为了增加这部分游戏体验,我们如何避免上述情况发生,使某个概率能在总体上较为均匀地分布呢?

例如现在有这样的需求:

A. 暴击率总体为20%
B. 要求每十次攻击,至少有一次暴击
C. 要求暴击的总体分布较为均匀

算法预览

经过一段时间的深思熟虑,笔者终于构建了一种名为“动态平衡概率”的算法。
虽然它还有一些局限性,但已经达到了基本可用的状态。

先上代码,为了方便演示图表,这里就用 python 了:

import matplotlib.pyplot as plt
import random# 初始化变量
InitCritPercent = 0.2       # 初始暴击率
dynamicCritPercent = 0.2    # 动态暴击率
currentCritPercent = 0      # 当前暴击概率
deltaCritPercent = 0        # 当前暴击率与初始暴击率的差值(用来表示变化)
attackTotalCount = 0        # 总攻击次数
critTotalCount = 0          # 总暴击次数
noCritStreakCount = 0       # 连续未暴击次数# 给 plot 准备的列表
currentCritPercentList = []
deltaCritPercentList = []
dynamicCritPercentList = []
noCritStreakCountList = []
isCriticalList = []# 获取最佳的 N
def find_optimal_N(p):# 从 1 到 500for i in range(1, 501):if(1 - p) ** i <= 0.05:return i# 测试 10000 次
for i in range(10000):attackTotalCount += 1isCritical = False# 检查当前攻击数是否大于 0if attackTotalCount > 0:# 计算当前暴击概率currentCritPercent = critTotalCount / attackTotalCount# 计算当前暴击概率与初始暴击率的差值deltaCritPercent = abs(InitCritPercent - currentCritPercent)# 计算动态暴击率dynamicCritPercent = (attackTotalCount * (InitCritPercent - currentCritPercent) + currentCritPercent) * pow(deltaCritPercent, 0.5)# 检查是否连续 N 次未暴击if noCritStreakCount < find_optimal_N(InitCritPercent) - 1:percent = random.random()if percent <= dynamicCritPercent:isCritical = TruenoCritStreakCount = 0else:noCritStreakCount += 1else:isCritical = TruenoCritStreakCount = 0if isCritical:critTotalCount += 1# 将数据添加到列表中currentCritPercentList.append(currentCritPercent)deltaCritPercentList.append(deltaCritPercent)dynamicCritPercentList.append(dynamicCritPercent)noCritStreakCountList.append(noCritStreakCount)isCriticalList.append(int(isCritical))# 创建多表格
fig, axs = plt.subplots(2)# 每 100 条数据标注一下
for i in range(0, len(currentCritPercentList), 100):axs[0].annotate(f"{currentCritPercentList[i]:.3f}", (i, currentCritPercentList[i]))# 画出暴击概率数据表格
axs[0].plot(currentCritPercentList, label='Current Crit Percent', color='r')
axs[0].plot(deltaCritPercentList, label='Delta Crit Percent', color='g')
axs[0].plot(dynamicCritPercentList, label='Dynamic Crit Percent', color='b')
axs[0].set_xlabel('Total Attacks')
axs[0].set_ylabel('Probability')
axs[0].legend()# 画出连续未暴击次数的表格
axs[1].plot(noCritStreakCountList, label='No-Crit Streak', color='m')
axs[1].plot(isCriticalList, label='Is Critical', color='c')
axs[1].set_xlabel('Total Attacks')
axs[1].set_ylabel('No-Crit Streak / Is Critical')
axs[1].legend()plt.show()

给定参数的运行结果如下图所示
反向 目标0.2 次数14 倍率差值开平方 无限制1
0 ~ 2000 次 如下
请添加图片描述
8000 ~ 10000 次 如下
请添加图片描述
可以看出,总体暴击率会在大概300次内稳定下来,并且逐渐逼近 0.2;
在攻击次数足够多时,“动态暴击率”的浮动也会趋于稳定;
这是一种通过调整每次攻击的暴击率,来达到动态平衡效果的算法。

核心思路

以“暴击率”为例,以下是这种“动态平衡概率”算法的核心思路:

KaTeX parse error: No such environment: align* at position 8: \begin{̲a̲l̲i̲g̲n̲*̲}̲ \text{P} &: 初始…

其实本文到这里就结束了,这套算法虽然简单,但是笔者发现它的过程还是挺有意思的。

感兴趣的朋友可以继续往下看,文末还有一些优化思路…

发现

还是前文中的需求:

A. 暴击率总体为20%
B. 要求每十次攻击,至少有一次暴击
C. 要求暴击的总体分布较为均匀

假如每次暴击的概率都是0.2,并且每十次攻击至少一次暴击,这样相当于增加了总体最终的暴击数,也就是变相增加了暴击率,确实需要通过某种方式将最终结果调整到0.2.

目前笔者想到的实现方式大致分为两种:

一种是“动态概率”,我们可以随着实际已出现的概率,动态地调整下一次的概率,并保证在最终结果上符合我们的目标概率。
另一种是提前将“随机种子”做好。在制作“种子”时使用连续分段的、适当长度的数组,每段数组中目标出现的概率基本相同,且总体概率符合我们的目标概率。再人为打乱每段数组,最后将他们拼接起来。但是这种方式还有个问题,就是打乱数组之后可能会出现两个数组中的一个暴击在头一个在尾,两次暴击又会间隔较远的情况,无法完全保证 B 条件成立。

本文先尝试第一种方式————“动态概率”

以前面的需求为例,假如每次暴击的概率都是0.2,并且每十次攻击至少一次暴击,先这样在Unity中看一下最终的暴击率会高出多少

using UnityEngine;public class CriticalHit : MonoBehaviour
{// 初始暴击率public float InitCritPercent = 0.2f;// 当前暴击概率private float currentCritPercent;// 当前总攻击次数private int attackTotalCount = 0;// 当前总暴击过的次数private int critTotalCount = 0;// 连续未出现暴击的次数private int noCritStreakCount = 0;private void Start(){currentCritPercent = InitCritPercent;}private void Update(){// 监听鼠标左键输入if (Input.GetMouseButtonDown(0)){// 测试一次PerformAttack();Debug.Log("当前暴击率:" + currentCritPercent);}if (Input.GetKeyDown(KeyCode.Space)){// 测试一万次for (int i = 0; i < 10000; i++) PerformAttack();}}private void PerformAttack(){attackTotalCount++;bool isCritical = false;if (attackTotalCount > 0){// 计算当前暴击概率 = 总暴击数 / 总攻击数currentCritPercent = (float)critTotalCount / attackTotalCount;}// 检查是否需要强制暴击if (noCritStreakCount < 9){float percent = Random.Range(0f, 1f);if (percent < InitCritPercent){isCritical = true;noCritStreakCount = 0; // 重置计数器}else{noCritStreakCount++;}}else{isCritical = true;noCritStreakCount = 0; // 重置计数器}if (isCritical) critTotalCount++;// 执行攻击,如果 isCritical 为 true,则为暴击if (isCritical)Debug.Log("Critical Hit!");elseDebug.Log("Normal Hit.");}
}

将这个脚本挂到场景中的空物体上,运行游戏,然后按空格键先测试一万次,再点击鼠标左键显示当前的暴击率
用上述方式测试几次,会发现最终的暴击率大概在 22.5% 左右,打印结果如下图所示
在Unity中测试1请添加图片描述

那么这多出来的 2.5% 为什么会是 2.5% 呢,它具体是怎么来的呢,如何避免它产生呢?

带着这样的疑惑,笔者开始尝试进行分析…

排除误差的可能

首先我们要排除这 2.5% 是误差的可能。

假设暴击率为 0.2,不考虑其他的设定和限制,每次测试十万次、共测试三次。
那么正常情况下的输出结果如下图所示
排除误差1
请添加图片描述
误差在 0.2% 左右,这与 2.5% 差别还是很大的,所以基本排除这是误差导致的情况。

探索

为了进一步优化算法,笔者决定结合已有的数据和个人直觉进行改进。

笔者用Python重新编写了一版代码,这样我们不仅可以方便地输出图表进行可视化分析,还能在这个基础上进行后续的代码修改和优化。

import matplotlib.pyplot as plt
import random# 初始化变量
InitCritPercent = 0.2   # 初始暴击率
attackTotalCount = 0    # 总攻击次数
critTotalCount = 0      # 总暴击次数
noCritStreakCount = 0   # 连续未暴击次数# 给 plot 准备的列表
currentCritPercentList = []
noCritStreakCountList = []
isCriticalList = []# 测试 10000 次
for i in range(10000):attackTotalCount += 1isCritical = False# 检查是否连续 9 次未暴击if noCritStreakCount < 9:percent = random.random()if percent <= InitCritPercent:isCritical = TruenoCritStreakCount = 0else:noCritStreakCount += 1else:isCritical = TruenoCritStreakCount = 0if isCritical:critTotalCount += 1# 计算当前暴击概率currentCritPercent = critTotalCount / attackTotalCount# 添加数据到列表中currentCritPercentList.append(currentCritPercent)noCritStreakCountList.append(noCritStreakCount)isCriticalList.append(int(isCritical))# 创建多表格
fig, axs = plt.subplots(2)# 画出暴击概率数据表格
axs[0].plot(currentCritPercentList, label='Current Crit Percent', color='r')
axs[0].set_xlabel('Total Attacks')
axs[0].set_ylabel('Probability')
axs[0].legend()# 每 100 条数据标注一下
for i in range(0, len(currentCritPercentList), 100):axs[0].annotate(f"{currentCritPercentList[i]:.5f}", (i, currentCritPercentList[i]))# 画出连续未暴击次数的表格
axs[1].plot(noCritStreakCountList, label='No-Crit Streak', color='m')
axs[1].plot(isCriticalList, label='Is Critical', color='c')
axs[1].set_xlabel('Total Attacks')
axs[1].set_ylabel('No-Crit Streak / Is Critical')
axs[1].legend()plt.show()

从输出的图表中不难看出,整体的暴击率确实变高了,如下图所示

前 2000 次 如下
无动态概率调整1
8000 ~ 10000 次 如下
请添加图片描述

如要将最终的暴击概率调整回 0.2,那就应该降低“当前暴击概率”,将 B 条件所增加的那部分修正回来。

“递增修正”

将前文的python代码添加几个变量,用来检测当前暴击概率的变化,当前暴击概率高于初始暴击率的时候,就降低动态暴击率,直到将当前暴击率拉回到正常水平;反之亦然。

import matplotlib.pyplot as plt
import random# 初始化变量
InitCritPercent = 0.2       # 初始暴击率
currentCritPercent = 0      # 当前暴击概率
deltaCritPercent = 0        # 当前暴击率与初始暴击率的差值(用来表示变化)
dynamicCritPercent = 0.2    # 动态暴击率
attackTotalCount = 0        # 总攻击次数
critTotalCount = 0          # 总暴击次数
noCritStreakCount = 0       # 连续未暴击次数# 给 plot 准备的列表
currentCritPercentList = []
deltaCritPercentList = []
dynamicCritPercentList = []
noCritStreakCountList = []
isCriticalList = []# 测试 10000 次
for i in range(10000):attackTotalCount += 1isCritical = False# 检查是否连续 9 次未暴击if attackTotalCount > 0:# 计算当前暴击概率currentCritPercent = critTotalCount / attackTotalCount# 计算当前暴击概率与初始暴击率的差值deltaCritPercent = abs(InitCritPercent - currentCritPercent)# 计算动态暴击率if(currentCritPercent > InitCritPercent):dynamicCritPercent -= deltaCritPercentif(currentCritPercent < InitCritPercent):dynamicCritPercent += deltaCritPercent# 检查是否连续 9 次未暴击if noCritStreakCount < 9:percent = random.random()if percent <= dynamicCritPercent:isCritical = TruenoCritStreakCount = 0else:noCritStreakCount += 1else:isCritical = TruenoCritStreakCount = 0if isCritical:critTotalCount += 1# 将数据添加到列表中currentCritPercentList.append(currentCritPercent)deltaCritPercentList.append(deltaCritPercent)dynamicCritPercentList.append(dynamicCritPercent)noCritStreakCountList.append(noCritStreakCount)isCriticalList.append(int(isCritical))# 创建多表格
fig, axs = plt.subplots(2)# 每 100 条数据标注一下
for i in range(0, len(currentCritPercentList), 100):axs[0].annotate(f"{currentCritPercentList[i]:.3f}", (i, currentCritPercentList[i]))# 画出暴击概率数据表格
axs[0].plot(currentCritPercentList, label='Current Crit Percent', color='r')
axs[0].plot(deltaCritPercentList, label='Delta Crit Percent', color='g')
axs[0].plot(dynamicCritPercentList, label='Dynamic Crit Percent', color='b')
axs[0].set_xlabel('Total Attacks')
axs[0].set_ylabel('Probability')
axs[0].legend()# 画出连续未暴击次数的表格
axs[1].plot(noCritStreakCountList, label='No-Crit Streak', color='m')
axs[1].plot(isCriticalList, label='Is Critical', color='c')
axs[1].set_xlabel('Total Attacks')
axs[1].set_ylabel('No-Crit Streak / Is Critical')
axs[1].legend()plt.show()

输出结果如下图所示
累计 目标0.2 次数10 无限制1
前 2000 次 如下
请添加图片描述

可以明显看出动态暴击率在大幅度地反复震荡,并且明显超出了 (0, 1) 的区间;
在震荡的高点时,会出现连续暴击的情况;在震荡的低点时,会出现连续地触发“保底”暴击;
这样虽然能将总体暴击概率稳定在 0.2 左右,但这显然不满足条件 C。

“递增修正”优化

显而易见,当动态暴击率超出 (0, 1) 区间时,就和 0、1 没有区别了
所以可以为它加个简单限幅,例如笔者将动态暴击率的幅度限制在(0.5倍初始暴击率,2倍初始暴击率)之间

# 同上文代码# 测试 10000 次
for i in range(10000):# 同上文代码if attackTotalCount > 0:# 同上文代码# 计算动态暴击率if(currentCritPercent > InitCritPercent):dynamicCritPercent = min(max(dynamicCritPercent - deltaCritPercent, InitCritPercent * 0.5), InitCritPercent * 2)if(currentCritPercent < InitCritPercent):dynamicCritPercent = min(max(dynamicCritPercent + deltaCritPercent, InitCritPercent * 0.5), InitCritPercent * 2)# 检查是否连续 9 次未暴击if noCritStreakCount < 9:# 同上文代码# 同上文代码# 同上文代码

输出结果如下图所示
累计 目标0.2 次数10 限制0.5-2倍1
前 2000 次 如下
请添加图片描述
8000 ~ 10000 次 如下
请添加图片描述

现在的算法已经基本可用了,但还需要多尝试才能找到合适的限幅范围。
当限幅范围过大时,概率的分布会变得不均匀;
限幅范围过小时,又会出现无法逼近目标概率(初始暴击率),比较麻烦。

“递增修正”测试

将上述优化过的算法应用到其他情景中,例如掷硬币,每5次投掷至少有一次正面
初始概率(目标概率) = 0.5

# 同上文代码
InitCritPercent = 0.5
dynamicCritPercent = 0.5
# 同上文代码# 测试 10000 次
for i in range(10000):# 同上文代码# 检查是否连续 4 次未掷出正面if noCritStreakCount < 4:# 同上文代码# 同上文代码# 同上文代码

输出结果如下图所示
累计 目标0.5 次数5 限制0.5-2倍1
前 2000 次 如下
请添加图片描述
8000 ~ 10000 次 如下
请添加图片描述

可以发现出现连续未正面的次数(连续未暴击次数),又在动态概率的波谷处出现“聚拢”现象,这很好理解:因为我们的限幅有些过大了。
总结下来,这种手动限定幅度的方式效率很低还容易出问题…

那么能不能让它根据自身目前状况,如目标概率、总攻击次数等参数,来动态调整 动态暴击率的增量呢?

“镜像修正”

基于以上思考,笔者希望每次攻击的“动态暴击率”是上次“当前暴击概率”关于“初始暴击率”的镜像,通过这种有针对性的“反向”操作,来将最终暴击率逼近目标值。
于是便有如下代码:

# 初始化变量
InitCritPercent = 0.2       # 初始暴击率
dynamicCritPercent = 0.2    # 动态暴击率
# 同上文代码# 测试 10000 次
for i in range(10000):# 同上文代码if attackTotalCount > 0:# 同上文代码# 计算动态暴击率dynamicCritPercent = attackTotalCount * InitCritPercent - (attackTotalCount - 1) * currentCritPercent# 检查是否连续 9 次未暴击if noCritStreakCount < 9:# 同上文代码# 同上文代码# 同上文代码

输出结果如下图所示
反向 目标0.2 次数10 无限制 无限制1
前 2000 次 如下
请添加图片描述
8000 ~ 10000 次 如下
请添加图片描述

虽然能将最终的暴击概率稳定在 0.2,但结果过于平均了!
可以说这种“修正”的操作过于灵敏,导致暴击的分布非常均匀,甚至没有出现连续 9 次以上的未暴击。但这仍不是我们想要的,需要继续优化。

“镜像修正”优化

笔者发现,这种“过于均匀”的分布情况也是因为每次修正幅度过大导致的。
现在要调整这个幅度会比“递增修正”的方法容易很多,只需要让“计算动态暴击率”的结果乘以一个较小的系数即可。

这个系数需要与当前的状态有关,并且是一个越来越小的值。
而在攻击次数越来越多时,currentCritPercent 也会越来越逼近 InitCritPercent 的值,所以 deltaCritPercent 会随着攻击次数的增多越来越小;
(又因为 currentCritPercent 趋向于一个比 InitCritPercent 偏大的值,那么 deltaCritPercent 也会永不为 0)
这里我们就用 deltaCritPercent 来作为系数,目前来看刚好合适。

# 同上文代码# 计算动态暴击率dynamicCritPercent = (attackTotalCount * (InitCritPercent - currentCritPercent) + currentCritPercent) * deltaCritPercent# 同上文代码

输出结果如下图所示
反向 目标0.2 次数10 倍率差值 无限制1
前 2000 次 如下
请添加图片描述
8000 ~ 10000 次 如下
请添加图片描述

由于对每次的 dynamicCritPercent 的幅度都做了差不多的限制,可以看到图二中,在前 1000 次左右攻击时,currentCritPercent 逼近目标值的速度很慢。
啧,还差一点…

继续优化!既然 deltaCritPercent 会随着攻击次数增多变得越来越小,那么我们不妨直接将它放大。

# 同上文代码# 计算动态暴击率dynamicCritPercent = (attackTotalCount * (InitCritPercent - currentCritPercent) + currentCritPercent) * pow(deltaCritPercent, 0.5)# 同上文代码

输出结果如下图所示
反向 目标0.2 次数10 倍率差值开平方 无限制1
前 2000 次 如下
请添加图片描述
8000 ~ 10000 次 如下
请添加图片描述

以上结果已经基本符合预期。

“镜像修正”测试

掷硬币

下面还是用硬币的例子:掷硬币,每5次投掷至少有一次正面
初始概率(目标概率) = 0.5

# 同上文代码
InitCritPercent = 0.5
dynamicCritPercent = 0.5
# 同上文代码# 测试 10000 次
for i in range(10000):# 同上文代码# 检查是否连续 4 次未掷出正面if noCritStreakCount < 4:# 同上文代码# 同上文代码# 同上文代码

输出结果如下图所示
反向 目标0.5 次数5 倍率差值开平方 无限制1
前 2000 次 如下
请添加图片描述
8000 ~ 10000 次 如下
请添加图片描述

也基本符合预期。

掷骰子

再以掷骰子为例:每掷出 15 次至少有一次是 点数 1。

# 同上文代码
InitCritPercent = 0.166667
dynamicCritPercent = 0.166667
# 同上文代码# 测试 10000 次
for i in range(10000):# 同上文代码# 检查是否连续 14 次未掷出正面if noCritStreakCount < 14:# 同上文代码# 同上文代码# 同上文代码

输出结果如下图所示
反向 目标0.166667 次数15 倍率差值开平方 无限制1
前 2000 次 如下
请添加图片描述
8000 ~ 10000 次 如下
请添加图片描述

稳定发挥。

优化

目前“镜像修正”算法已经基本可用了,但是虽然叫“镜像”,却已经没有了镜像当初的样子。

不如就直接改名叫“动态平衡概率”算法好了…

算法优化

细心的朋友应该会发现,这套算法在一开始的概率会低于目标概率一些,并且逼近的速度还是慢了些。后期稳定性也没有想象中的高。

笔者目前能想到的继续优化的方式有三种:

1.分段修改 deltaCritPercent 的开根,类似LOD模型替换的感觉;
2.用 log 函数做系数,然后当次数达到一定值时直接 * deltaCritPercent 就可以了;
3.按目标概率的比例,给“总攻击次数”和“总暴击次数”设置较大的初始值。这样不用给 deltaCritPercent 开平方,就能得到一个较为满意的结果,也会相对高效一些。

笔者还没来得及测试性能,如果后续有相关优化会修改本文章,或者发一篇新文章。

关于判断次数

我们感觉到的小概率事件发生的概率通常在 5% 或 1% 以下,通过这两个标准,我们可以很轻松地得出“目标概率为 X 时,操作 N 次至少出现一次目标事件”中的N:

def find_optimal_N(p):# 从 1 到 500for i in range(1, 501):if(1 - p) ** i <= 0.05:return iprint(find_optimal_N(0.2))
print(find_optimal_N(0.5))
print(find_optimal_N(0.166667))# 输出结果为:
# 14
# 5
# 17

所以当目标概率为 0.2、0.5、0.166667 时,N 比较合适的值为 14、5、17。
当目标概率小于 0.05 时,可以让if(1 - p) ** i <= 0.01:,或者更小。

结语

虽然本算法目前还有待优化,但已经足够应对一些游戏场景。
关于那多出的2.5%的问题,我会持续探索,直到找到满意的答案。

如果这篇文章能为你解决问题或带来新的启发,那我会感到非常荣幸!我始终相信,知识的传播能让我们共同进步。

对于已经在这个领域有丰富经验的大佬们,如果你们有任何建议或批评,我都非常欢迎。你们的反馈不仅能帮助我改进,也能让这篇文章更加完善,从而帮助到更多的人。

感谢你抽出宝贵的时间来阅读这篇文章,如果你觉得有用,也请不吝分享给更多需要的人。

再次感谢,期待与你们在知识的海洋里再次相遇!

这篇关于游戏中的随机——“动态平衡概率”算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/209949

相关文章

使用C#如何创建人名或其他物体随机分组

《使用C#如何创建人名或其他物体随机分组》文章描述了一个随机分配人员到多个团队的代码示例,包括将人员列表随机化并根据组数分配到不同组,最后按组号排序显示结果... 目录C#创建人名或其他物体随机分组此示例使用以下代码将人员分配到组代码首先将lstPeople ListBox总结C#创建人名或其他物体随机分组

Python开发围棋游戏的实例代码(实现全部功能)

《Python开发围棋游戏的实例代码(实现全部功能)》围棋是一种古老而复杂的策略棋类游戏,起源于中国,已有超过2500年的历史,本文介绍了如何用Python开发一个简单的围棋游戏,实例代码涵盖了游戏的... 目录1. 围棋游戏概述1.1 游戏规则1.2 游戏设计思路2. 环境准备3. 创建棋盘3.1 棋盘类

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

hdu4865(概率DP)

题意:已知前一天和今天的天气概率,某天的天气概率和叶子的潮湿程度的概率,n天叶子的湿度,求n天最有可能的天气情况。 思路:概率DP,dp[i][j]表示第i天天气为j的概率,状态转移如下:dp[i][j] = max(dp[i][j, dp[i-1][k]*table2[k][j]*table1[j][col] )  代码如下: #include <stdio.h>#include

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费