Stewart六自由度正解、逆解计算-C#和Matlab程序

2023-10-14 10:12

本文主要是介绍Stewart六自由度正解、逆解计算-C#和Matlab程序,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、Stewart并联六自由度正解计算   

(一)概况     

(二)Matlab正解计算

1、参考程序一

2、参考程序二

(三)C#程序正解计算

1、工程下载链接

2、正解运行计算

(四)正程序打包下载程序合集

二、逆解计算

(一)Matlab逆解计算

1、Matlab逆解计算程序一

2、Matlab逆解计算程序二

3、Matlab逆解计算程序三

(二)C#程序逆解计算

1、工程下载链接

2、逆解运行计算

(三)逆解程序打包下载程序合集


一、Stewart并联六自由度正解计算   

(一)概况     

Stewart平台,也称为六自由度并联机构,是一种具有六个自由度(三个平移自由度和三个旋转自由度)的机械结构。它由一个固定的底座和一个可移动的平台组成,通过六个连杆连接底座和平台。

要进行Stewart平台的正解计算,即已知各个连杆的长度和底座上的固定点坐标,求解平台上的移动点坐标。正解计算可以通过以下步骤完成:

1. 定义底座和平台的坐标系。选择一个适当的坐标系,并将底座和平台的坐标系与之关联。

2. 确定底座上的固定点坐标。假设底座上有六个固定点,分别记作P1, P2, P3, P4, P5, P6,并给出它们在底座坐标系中的坐标。

3. 确定各个连杆的长度。假设有六个连杆,分别记作L1, L2, L3, L4, L5, L6,并给出它们的长度。

4. 确定平台上的移动点坐标。假设平台上有一个移动点M,并给出它在平台坐标系中的坐标。

5. 利用三角关系计算各个连杆的角度。根据已知的底座固定点坐标、连杆长度和平台上的移动点坐标,可以使用三角关系计算出各个连杆的角度。

6. 利用旋转矩阵计算平台的位姿。根据各个连杆的角度,可以构建旋转矩阵,然后将平台上的移动点坐标转换到底座坐标系中,从而得到平台的位姿。

以上步骤仅为大致的计算过程,具体实现时需要根据具体的连杆结构和坐标系选择进行适当的数学推导和计算。在实际应用中,还需要考虑误差校正、奇异姿态等问题。

请注意,Stewart平台的正解计算相对复杂,需要较强的数学和几何知识。如果你需要更详细和精确的计算结果,建议参考相关的文献或专业机器人学教材,或者使用专门的机器人仿真软件进行计算和分析。
 

(二)Matlab正解计算

1、参考程序一

      以下是一个使用MATLAB编写的Stewart并联六自由度正解计算的示例程序:

%这个程序计算了Stewart并联六自由度的正解,其中腿的长度 L 和腿的旋转角度 theta 是输入参数。
%程序通过循环计算每个腿的末端点坐标,并使用这些坐标计算平台的旋转矩阵。
%最后,程序打印出腿的末端点坐标和平台的旋转矩阵。
%你可以根据需要修改腿的长度和旋转角度,然后运行程序,即可得到相应的结果。% 输入参数
L = [1, 1, 1, 1, 1, 1]; % 腿的长度
theta = [0, 0, 0, 0, 0, 0]; % 腿的旋转角度(单位:弧度)% 计算腿的末端点坐标
P = zeros(3, 6); % 存储末端点坐标
for i = 1:6P(:, i) = [L(i)*cos(theta(i)); L(i)*sin(theta(i)); 0];
end% 计算平台的旋转矩阵
R = zeros(3, 3); % 存储旋转矩阵
for i = 1:6R = R + cos(theta(i))*eye(3) + (1 - cos(theta(i)))*(P(:, i)*P(:, i)') - sin(theta(i))*skewSymmetricMatrix(P(:, i));
end% 打印结果
disp("腿的末端点坐标:");
disp(P);
disp("平台的旋转矩阵:");
disp(R);% 辅助函数:计算叉乘矩阵
function M = skewSymmetricMatrix(v)M = [  0    -v(3)   v(2);v(3)   0    -v(1);-v(2)  v(1)    0  ];
end

计算结果

2、参考程序二

% 输入参数
L = [0.5, 0.5, 0.5, 0.5, 0.5, 0.5]; % 腿的长度
theta = [pi/6, pi/4, pi/3, pi/6, pi/4, pi/3]; % 腿的旋转角度% 计算腿的末端点坐标
P = zeros(3, 6); % 存储末端点坐标
for i = 1:6P(:, i) = [L(i)*cos(theta(i)); L(i)*sin(theta(i)); 0];
end% 计算平台的旋转矩阵
R = zeros(3, 3); % 存储旋转矩阵
for i = 1:6R = R + cos(theta(i))*eye(3) + (1 - cos(theta(i)))*(P(:, i)*P(:, i)') - sin(theta(i))*skewSymmetricMatrix(P(:, i));
end% 打印结果
disp("腿的末端点坐标:");
disp(P);
disp("平台的旋转矩阵:");
disp(R);% 绘制图形
figure;
hold on;
grid on;
axis equal;
xlabel('X');
ylabel('Y');
zlabel('Z');% 绘制腿的末端点
scatter3(P(1,:), P(2,:), P(3,:), 'filled');% 绘制平台
platform = [0, 1, 1, 0, 0; 0, 0, 1, 1, 0; 0, 0, 0, 0, 0];
platform = R * platform;
patch(platform(1,:), platform(2,:), platform(3,:), 'r');% 绘制连线
for i = 1:6line([0, P(1,i)], [0, P(2,i)], [0, P(3,i)], 'Color', 'b');
end% 辅助函数:计算叉乘矩阵
function M = skewSymmetricMatrix(v)M = [  0    -v(3)   v(2);v(3)   0    -v(1);-v(2)  v(1)    0  ];
end

计算结果

(三)C#程序正解计算

1、工程下载链接

工程下载链接:

https://download.csdn.net/download/panjinliang066333/88421740

2、正解运行计算

给定下平台顶点坐标、六个连杆长度和角度,去计算旋转矩阵和位置矩阵。

以下是一个使用C#编写的Stewart并联六自由度正解计算的示例程序:

主运行程序

运行结果

在上述示例程序中,我们定义了底座上的固定点坐标、连杆长度和平台上的移动点坐标,并调用`StewartForwardKinematics`方法计算平台的位置坐标和姿态(旋转矩阵)。最后,我们将结果显示在控制台中。

请注意,这只是一个简化的示例程序,仅用于演示Stewart并联六自由度正解计算的基本思路。在实际应用中,可能需要考虑更多的细节和特殊情况,例如奇异姿态、误差校正等。如果需要更精确和完整的计算,建议参考相关的机器人学文献或专业软件。
 

(四)正程序打包下载程序合集

下载链接:

https://download.csdn.net/download/panjinliang066333/88421740

二、逆解计算

Stewart平台的逆解计算是指根据给定的目标位置和姿态,求解平台上各个执行器的长度和角度。逆解计算可以使用数值方法或解析方法进行。

(一)Matlab逆解计算

1、Matlab逆解计算程序一

%逆解计算L1=0.5;
L2=0.5;
L3=0.5;
L4=0.5;
L5=0.5;
L6=0.5;R11=4.3322;
R12=0.2105;
R13=-1.5;
R21=0.2105;
R22=4.4237;
R23=1.366;
R31=1.5;
R32=-1.36;
R33=4.1463;P1=[0.433;0.25;0];
P2=[0.3536;0.3536;0];
P3=[0.2500;0.4330;0];
P4=[0.433;0.25;0];
P5=[0.3536;0.3536;0];
P6=[0.2500;0.4330;0];
% 输入参数
L = [L1, L2, L3, L4, L5, L6]; % 腿的长度
R = [R11, R12, R13; R21, R22, R23; R31, R32, R33]; % 平台的旋转矩阵
P = [P1, P2, P3, P4, P5, P6]; % 腿的末端点坐标% 计算基座坐标系到平台坐标系的转换矩阵
T = [R, zeros(3,1); 0 0 0 1];% 计算腿的旋转角度
theta = zeros(1, 6); % 存储腿的旋转角度
for i = 1:6% 计算腿的末端点在基座坐标系下的坐标P_base = T \ [P(:, i); 1];P_base = P_base(1:3);% 计算腿的旋转轴a = L(i) * R(:, 3);% 计算腿的末端点在基座坐标系下在旋转轴方向上的投影b = dot(P_base, a) * a;% 计算腿的末端点在基座坐标系下在旋转轴垂直方向上的投影c = P_base - b;% 计算腿的旋转角度theta(i) = atan2(norm(cross(a, c)), dot(a, c));
end% 打印结果
disp("腿的旋转角度:");
disp(theta);% 辅助函数:计算叉乘矩阵
function M = skewSymmetricMatrix(v)M = [  0    -v(3)   v(2);v(3)   0    -v(1);-v(2)  v(1)    0  ];
end

在程序中,你需要提供腿的长度 L、平台的旋转矩阵 R 和腿的末端点坐标 P。程序首先计算基座坐标系到平台坐标系的转换矩阵 T,然后根据逆运动学的原理,计算每个腿的旋转角度 theta

计算过程中,程序首先将腿的末端点坐标转换到基座坐标系下,然后计算腿的旋转轴和末端点在旋转轴方向上的投影。最后,根据旋转轴和投影的关系,计算腿的旋转角度。

请注意,这只是一个简单的示例程序,具体的实现可能会根据你的具体需求和机构的几何结构而有所不同。你可能需要根据你的应用场景进行适当的修改和扩展。

 运行结果

2、Matlab逆解计算程序二


%逆解计算R11=4.3322;
R12=0.2105;
R13=-1.5;
R21=0.2105;
R22=4.4237;
R23=1.366;
R31=1.5;
R32=-1.36;
R33=4.1463;P1=[0.433;0.25;0];
P2=[0.3536;0.3536;0];
P3=[0.2500;0.4330;0];
P4=[0.433;0.25;0];
P5=[0.3536;0.3536;0];
P6=[0.2500;0.4330;0];
% 输入参数
R = [R11, R12, R13; R21, R22, R23; R31, R32, R33]; % 平台的旋转矩阵
P = [P1, P2, P3, P4, P5, P6]; % 腿的末端点坐标% 计算腿的长度
L = zeros(1, 6); % 存储腿的长度
for i = 1:6fprintf("计算第 %d 条腿的长度:\n", i);% 步骤1: 计算 a_ia = R(:, 3);fprintf("步骤1: a_%d = R(:, 3) =\n", i);disp(a);% 步骤2: 计算 b_ib = P(:, i);fprintf("步骤2: b_%d = P%d =\n", i, i);disp(b);% 步骤3: 计算 L_iL(i) = norm(b - a);fprintf("步骤3: L_%d = norm(b_%d - a_%d) = %.4f\n", i, i, i, L(i));fprintf("\n");
end% 打印结果
disp("腿的长度:");
disp(L);

在程序中,你需要提供腿的长度 L、平台的旋转矩阵 R 和腿的末端点坐标 P。程序会按照步骤计算每个腿的长度,并给出每个步骤的中间结果。

请注意,这只是一个示例程序,具体的实现可能会根据你的具体需求和机构的几何结构而有所不同。你可以根据需要修改程序,添加额外的计算步骤或输出结果。

计算结果

3、Matlab逆解计算程序三


%逆解计算R11=4.3322;
R12=0.2105;
R13=-1.5;
R21=0.2105;
R22=4.4237;
R23=1.366;
R31=1.5;
R32=-1.36;
R33=4.1463;P1=[0.433;0.25;0];
P2=[0.3536;0.3536;0];
P3=[0.2500;0.4330;0];
P4=[0.433;0.25;0];
P5=[0.3536;0.3536;0];
P6=[0.2500;0.4330;0];
% 输入参数
R = [R11, R12, R13; R21, R22, R23; R31, R32, R33]; % 平台的旋转矩阵
P = [P1, P2, P3, P4, P5, P6]; % 腿的末端点坐标% 计算腿的长度
L = zeros(1, 6); % 存储腿的长度
for i = 1:6fprintf("计算第 %d 条腿的长度:\n", i);% 步骤1: 计算 a_ia = R(:, 3);fprintf("步骤1: a_%d = R(:, 3) =\n", i);disp(a);% 步骤2: 计算 b_ib = P(:, i);fprintf("步骤2: b_%d = P%d =\n", i, i);disp(b);% 步骤3: 计算 L_iL(i) = norm(b - a);fprintf("步骤3: L_%d = norm(b_%d - a_%d) = %.4f\n", i, i, i, L(i));fprintf("\n");
end% 打印结果
disp("腿的长度:");
disp(L);

在程序中,你需要提供腿的长度 L、平台的旋转矩阵 R 和腿的末端点坐标 P。程序会按照步骤计算每个腿的角度和长度,并给出每个步骤的中间结果。

请注意,这只是一个示例程序,具体的实现可能会根据你的具体需求和机构的几何结构而有所不同。你可以根据需要修改程序,添加额外的计算步骤或输出结果。

程序运行过程

结果

(二)C#程序逆解计算

1、工程下载链接

工程下载链接:

https://download.csdn.net/download/panjinliang066333/88422020

2、逆解运行计算

给定下平台顶点坐标、六个连杆长度和角度,去计算旋转矩阵和位置矩阵。

以下是一个使用C#编写的Stewart并联六自由度正解计算的示例程序:

主运行程序

程序运行结果

(三)逆解程序打包下载程序合集

下载链接:

https://download.csdn.net/download/panjinliang066333/88422020

这篇关于Stewart六自由度正解、逆解计算-C#和Matlab程序的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/209855

相关文章

2. c#从不同cs的文件调用函数

1.文件目录如下: 2. Program.cs文件的主函数如下 using System;using System.Collections.Generic;using System.Linq;using System.Threading.Tasks;using System.Windows.Forms;namespace datasAnalysis{internal static

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

poj 1113 凸包+简单几何计算

题意: 给N个平面上的点,现在要在离点外L米处建城墙,使得城墙把所有点都包含进去且城墙的长度最短。 解析: 韬哥出的某次训练赛上A出的第一道计算几何,算是大水题吧。 用convexhull算法把凸包求出来,然后加加减减就A了。 计算见下图: 好久没玩画图了啊好开心。 代码: #include <iostream>#include <cstdio>#inclu

uva 1342 欧拉定理(计算几何模板)

题意: 给几个点,把这几个点用直线连起来,求这些直线把平面分成了几个。 解析: 欧拉定理: 顶点数 + 面数 - 边数= 2。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

uva 11178 计算集合模板题

题意: 求三角形行三个角三等分点射线交出的内三角形坐标。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vector>#include <

用命令行的方式启动.netcore webapi

用命令行的方式启动.netcore web项目 进入指定的项目文件夹,比如我发布后的代码放在下面文件夹中 在此地址栏中输入“cmd”,打开命令提示符,进入到发布代码目录 命令行启动.netcore项目的命令为:  dotnet 项目启动文件.dll --urls="http://*:对外端口" --ip="本机ip" --port=项目内部端口 例: dotnet Imagine.M

XTU 1237 计算几何

题面: Magic Triangle Problem Description: Huangriq is a respectful acmer in ACM team of XTU because he brought the best place in regional contest in history of XTU. Huangriq works in a big compa

EMLOG程序单页友链和标签增加美化

单页友联效果图: 标签页面效果图: 源码介绍 EMLOG单页友情链接和TAG标签,友链单页文件代码main{width: 58%;是设置宽度 自己把设置成与您的网站宽度一样,如果自适应就填写100%,TAG文件不用修改 安装方法:把Links.php和tag.php上传到网站根目录即可,访问 域名/Links.php、域名/tag.php 所有模板适用,代码就不粘贴出来,已经打

跨系统环境下LabVIEW程序稳定运行

在LabVIEW开发中,不同电脑的配置和操作系统(如Win11与Win7)可能对程序的稳定运行产生影响。为了确保程序在不同平台上都能正常且稳定运行,需要从兼容性、驱动、以及性能优化等多个方面入手。本文将详细介绍如何在不同系统环境下,使LabVIEW开发的程序保持稳定运行的有效策略。 LabVIEW版本兼容性 LabVIEW各版本对不同操作系统的支持存在差异。因此,在开发程序时,尽量使用