异常值挖掘方法——孤立森林Isolation Forest

2023-10-14 08:30

本文主要是介绍异常值挖掘方法——孤立森林Isolation Forest,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

异常值挖掘方法

一、内容概览

内容大致分为两大部分,第一部分是异常值挖掘方法概述,简略介绍异常值挖掘方法的分类及其优缺点。第二部分介绍孤立森林算法(iForest),Isolation Forest 简称 iForest,该算法是周志华在2010年提出的一个异常值检测算法,在工业界很实用,算法效果好,时间效率高。第二部分包括对iForest算法思想、原理、流程的介绍,以及来自sklearn官网上的一个iForest例子实战讲解,并附上代码与注释。

二、异常值挖掘方法概述

2.1统计量检验

先对变量做一个描述性统计,进而查看哪些数据是不合理的。如箱型图分析,平均值,最大最小值分析,统计学上的3σ法则等。 假设原数据服从某个分布(如高斯分布),然后计算 μ \mu μ σ \sigma σ再计算   ( μ − 3 σ , μ + 3 σ ) \ (\mu-3\sigma,\mu+3\sigma)  (μ3σ,μ+3σ)的区间,最后落在区间之外的数据点就被认为是异常值。

  • 优点:

    1.比较直观,方法简单

    2.建立在标准的统计学理论之上,当存在充分数据以及选对检验方法时,效果非常好。

  • 缺点:

    适合一元场合情况之下,对于高维数据,检验可能性较差。

2.2基于邻近度的方法

通常可以在对象之间定义邻近性度量,并且许多移仓检测方法都基于邻近度。异常对象是那些远离大部分其他对象的对象,这一邻域的许多技术都基于距离,称作基于距离的离群点检测技术,代表算法:基于KNN的密度检测算法。

  • 优点:

    原理简单,比统计量检验法应用范围更广。

  • 缺点:

    1.基于邻近度的方法一般需要O(m^2)时间(其中m是对象个数),这对于大型数据集可能代价过高。

    2.该方法对参数的选择是敏感的。

    3.不能处理具有不同密度区域的数据集,不能考虑这种密度的变化。

2.3基于密度的离群点检测

离群点是在低密度区域中的对象。基于密度的离群点检测与基于邻近度的离群点检测密切相关,因为密度通常用邻近度定义。一种常用的定义密度的方法是,定义密度为到k个最近邻的平均距离的倒数。如果该距离小,则密度高,反之亦然。

  • 优点:

    1.给出了对象离群程度的定量度量。

    2.数据具有不同密度的区域也能够很好地处理。

  • 缺点:

    1.有O(m^2)时间复杂度(其中m是对象个数)

    2.参数选择困难,评估指标缺乏参照标准。

2.4基于聚类的离群点检测

一种利用聚类检测离群点的方法是丢弃原理其他簇的小簇。这种方法可以与任何聚类技术一起使用,但是需要最小簇大小和小簇与其他簇之间距离的阈值,通常,该过程可以简化为丢弃小于某个最小尺寸的所有簇。

  • 优点

    1. 聚类技术(如K均值)的时间和空间复杂度是线性或接近线性的,该检测技术较为高效的。
    2. 可能同时发现簇和离群点(簇的定义通常是离群点的补)
  • 缺点

    产生的离群点集和它们的得分可能非常依赖所用的簇的个数和数据总离群点的存在性。聚类算法产生的簇的 质量对该算法产生的离群点的质量影响非常大。

三、孤立森林

3.1思想介绍

对于如何查找哪些点是否容易被孤立,iForest使用了一套非常高效的策略。假设我们用一个随机超平面来切割数据空间, 切一次可以生成两个子空间,再继续用一个随机超平面来切割每个子空间,循环下去,直到每子空间里面只有一个数据点为止。那些密度很高的簇是可以被切很多次才会停止切割,但是那些密度很低的点很容易很早的就停到一个子空间了。由于切割是随机的,所以需要用集成(ensemble)的方法来得到一个收敛值,即反复从头开始切,然后平均每次切的结果,且随着森林中树木棵树增多,收敛越快。孤立森林为给定的数据集构建了一组iTree,较少的异常实例会导致树结构中的较短路径,而且具有可区分的属性值的实例更可能在早期分区。 因此,当一棵由随机树木组成的森林为某些特定点共同产生较短的路径长度时,则它们很可能是异常的。通过集成算法求出平均路径长度之后,异常是那些在iTree上具有较短平均路径长度的实例。

在这里插入图片描述

如图2.1所示,异常更容易被隔离,因此路径长度较短。正常点xi需要隔离十二个随机分区,xo异常仅需要隔离四个分区,显然异常点更早被区分出来。

3.2 算法原理

  • 疑问:为什么要用树结构来分区?

递归分区可以用树结构表示,所以隔离一个点所需的分区数等于从根节点到终止节点的路径长度。

孤立森林算法总共分两步:

  1. 训练 iForest:从训练集中进行采样,构建孤立树,对森林中的每棵孤立树进行测试,记录路径长度;

    2.计算异常分数:根据异常分数计算公式,计算每个样本点的 anomaly score。

  • 训练iForest实现步骤如下:
  1. 从训练数据中随机选择t个点样本点作为子样本,放入树的根节点。
  2. 随机指定一个属性,在当前节点数据中随机产生一个切割点p(切割点产生于当前节指定属性的最大值和最小值之间)。
  3. 以此切割点生成了一个超平面,然后将当前节点数据空间划分为2个子空间:把指定属性里小于p的数据放在当前节点的左孩子,把大于等于p的数据放在当前节点的右孩子。
  4. 在孩子节点中递归步骤2和3,不断构造新的孩子节点,直到 孩子节点中只有一个数据(无法再继续切割) 或 孩子节点已到达限定高度 。
  • 计算异常分数

获得t个iTree之后,iForest 训练就结束,然后就可以用生成的iForest来评估测试数据。对于一个训练数据x,我们令其遍历每一棵iTree,然后计算x最终落在每个树第几层(x在树的高度)。然后我们可以得出x在每棵树的高度平均值,即 平均路径长度(the average path length over t iTrees),通过平均路径长度可以得到每个实例的异常分数。
在这里插入图片描述

如图4.2所示,a,b,c,d四个实例中,d的平均路径最短,最早被区分出来,可能是异常值点。

平均路径长度:
c ( n ) = 2 H ( n − 1 ) − ( 2 ( n − 1 ) / n ) (1) c(n)=2H(n-1)-(2(n-1)/n)\tag{1} c(n)=2H(n1)(2(n<

这篇关于异常值挖掘方法——孤立森林Isolation Forest的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/209354

相关文章

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

webm怎么转换成mp4?这几种方法超多人在用!

webm怎么转换成mp4?WebM作为一种新兴的视频编码格式,近年来逐渐进入大众视野,其背后承载着诸多优势,但同时也伴随着不容忽视的局限性,首要挑战在于其兼容性边界,尽管WebM已广泛适应于众多网站与软件平台,但在特定应用环境或老旧设备上,其兼容难题依旧凸显,为用户体验带来不便,再者,WebM格式的非普适性也体现在编辑流程上,由于它并非行业内的通用标准,编辑过程中可能会遭遇格式不兼容的障碍,导致操

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

【北交大信息所AI-Max2】使用方法

BJTU信息所集群AI_MAX2使用方法 使用的前提是预约到相应的算力卡,拥有登录权限的账号密码,一般为导师组共用一个。 有浏览器、ssh工具就可以。 1.新建集群Terminal 浏览器登陆10.126.62.75 (如果是1集群把75改成66) 交互式开发 执行器选Terminal 密码随便设一个(需记住) 工作空间:私有数据、全部文件 加速器选GeForce_RTX_2080_Ti

【VUE】跨域问题的概念,以及解决方法。

目录 1.跨域概念 2.解决方法 2.1 配置网络请求代理 2.2 使用@CrossOrigin 注解 2.3 通过配置文件实现跨域 2.4 添加 CorsWebFilter 来解决跨域问题 1.跨域概念 跨域问题是由于浏览器实施了同源策略,该策略要求请求的域名、协议和端口必须与提供资源的服务相同。如果不相同,则需要服务器显式地允许这种跨域请求。一般在springbo

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出 在数字化时代,文本到语音(Text-to-Speech, TTS)技术已成为人机交互的关键桥梁,无论是为视障人士提供辅助阅读,还是为智能助手注入声音的灵魂,TTS 技术都扮演着至关重要的角色。从最初的拼接式方法到参数化技术,再到现今的深度学习解决方案,TTS 技术经历了一段长足的进步。这篇文章将带您穿越时

Thymeleaf:生成静态文件及异常处理java.lang.NoClassDefFoundError: ognl/PropertyAccessor

我们需要引入包: <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-thymeleaf</artifactId></dependency><dependency><groupId>org.springframework</groupId><artifactId>sp

深入理解数据库的 4NF:多值依赖与消除数据异常

在数据库设计中, "范式" 是一个常常被提到的重要概念。许多初学者在学习数据库设计时,经常听到第一范式(1NF)、第二范式(2NF)、第三范式(3NF)以及 BCNF(Boyce-Codd范式)。这些范式都旨在通过消除数据冗余和异常来优化数据库结构。然而,当我们谈到 4NF(第四范式)时,事情变得更加复杂。本文将带你深入了解 多值依赖 和 4NF,帮助你在数据库设计中消除更高级别的异常。 什么是