2023年认证杯SPSSPRO杯数学建模A题(第一阶段)碳板跑鞋全过程文档及程序

本文主要是介绍2023年认证杯SPSSPRO杯数学建模A题(第一阶段)碳板跑鞋全过程文档及程序,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2023年认证杯SPSSPRO杯数学建模

A题 碳板跑鞋

原题再现:

  在专业运动鞋上使用的碳板,也可被称为碳纤维增强环氧树脂材料,事实上是将碳纤维织成布,再浸入环氧树脂固化后形成的板材。它以较轻的重量达到了相当好的弹性和刚度。在上世纪 90 年代就出现了鞋底嵌入碳板的篮球鞋。相比于软质鞋底,它可以提高对足底和足弓的支撑能力,使足部在发力时,足底更不容易变形,承托力更加均匀,进而提高抗扭性。这样可以提高运动能力,减少受伤的可能。最近几年,市场上又出现了一种鞋底嵌入碳板的跑鞋,生产商声称通过精心调整碳板的形状和弹性,配合高弹性的缓冲层,可以在跑步过程中恰当地发挥碳板的回弹能力,提高能量的利用率,最终有助于提高长跑成绩。著名长跑运动员基普乔格(Eliud Kipchoge)在 2017 年首次将碳板跑鞋应用于大型赛事中,并取得了相当惊人的成绩。他在近几年连破马拉松世界纪录,很多人认为,他所使用的最新技术的碳板跑鞋对此成绩也有一定的贡献。
  第一阶段问题:
  1. 我们可以看到多数普通马拉松跑鞋的鞋底从侧面看呈现向下凸起的弧形,鞋头和鞋跟都会略微上翘。请你和你的团队建立合理的数学模型,优化鞋底的侧剖面外形。请着重考虑跑鞋以及运动员的哪些特性会影响模型的结果。
  2. 在上一问的基础上,如果我们在鞋底嵌入一块全长、侧剖面形状和外底相同的碳板。请你和你的团队建立合理的数学模型,估计此种设计会对长跑步伐的能量消耗起到怎样的作用,对成绩可能产生怎样的影响?
  3. 如果我们打算全新设计一种在鞋底嵌入全长、侧剖面形状和外底相同的碳板的马拉松跑鞋,请为此目的来优化设计鞋底的侧剖面外形。并请与第一问的结果对比,判断二者是否存在区别并解释其成因。

整体求解过程概述(摘要)

  本文拟研究基于有限元与神经网络的碳板跑鞋优化设计的问题,结合实际情况与马拉松运动员的不同特性进行分析,建立相关数学模型.
  随着马拉松赛跑越来越流行,马拉松跑鞋也成了马拉松比赛的核心装备. 经过多年的发展,碳板跑鞋已经成为当下市场上主流路跑竞速鞋的模样. 碳板跑鞋配合高弹性的缓冲层,可以在跑步过程中恰当地发挥碳板的回弹能力,可有助于提高长跑成绩.
  对于问题一,设计了跑鞋的结构数学模型,研究了跑鞋结构设计对马拉松运动员的影响,考虑了跑鞋的中底材料与属性、纵向弯曲刚度、鞋后跟角度、鞋质量、跟稳定剂等对跑步相关性能和损伤的影响,设计出适合大多数马拉松运动员的跑鞋. 然后考虑从运动员的年龄、性别以及马拉松的距离方面考虑并从损伤和效率方面评估跑鞋,并得出相应的结论. 再运用 Logistic 回归模型,评估年龄、性别、马拉松距离、速度以及运动员损伤程度等对跑鞋的选择的影响程度.
  对于问题二,运用有限元模拟的方法,将普通跑鞋中加入碳板元素,并且探讨了不同跑鞋对马拉松运动员消耗能量以及比赛成绩的影响. 首先鉴于不同跑鞋的设计对马拉松运动员产生的影响,进行有限元模拟. 在第一问跑鞋设计的基础上,在鞋底嵌入一块全长、侧剖面形状和外底相同的碳板. 利用 ABAQUS 软件对外底、中底和两种碳纤维板进行了三维建模. 运用数学软件 SPSS 对不同的跑鞋与心率以及能量消耗量进行回归分析,并且通过了相关性检验. 从拟合的结果中可以看出,碳板跑鞋的设计目的是减少足部运动和冲击负荷的幅度或速率以降低受伤风险,减少能量消耗,进而可以提高运动成绩.
  对于问题三,基于对能量经济和运动经济的分析,对碳板跑鞋进行优化设计,首先采用 PCA 和偏最小二乘对研究数据进行预处理,然后将它与神经网络相结合,以实现模型的建立和训练,为碳板跑鞋的图像提供了最佳的参考组合. 最终我们设计了适用于不同人群不同适用场合的七款不同性能的碳板跑鞋:铲形推进式直碳板超厚底竞速跑鞋、X 形厚底碳板竞速跑鞋、碳纤维 WAVE 波浪板竞速跑鞋、全(半)掌抗扭碳板训练鞋、Y 型复合碳板跑鞋、全掌异构碳板训练鞋、H 形碳板长距离慢跑鞋.
  最后本文对模型的优缺点进行了评价,结合实际对模型的推广进行了分析.

问题分析:

  经过多年的发展,碳板跑鞋已经成为当下市场上主流路跑竞速鞋的模样. 碳板跑鞋配合高弹性的缓冲层,可以在跑步过程中恰当地发挥碳板的回弹能力,提高能量的利用率,最终有助于提高长跑成绩. 研究表明,跑鞋的设计对牵引力和运动经济的性能有重要的影响,马拉松跑鞋的缓冲性能对于运动员身体能量的消耗乃至成绩的影响至关重要.
  问题一分析:
  本题主要研究跑鞋结构设计对马拉松运动员的影响,因此先设计跑鞋的结构数学模型,其中主要考虑跑鞋的中底材料与属性、纵向弯曲刚度、鞋后跟角度、鞋质量、跟稳定剂等对跑步相关性能和损伤的影响,设计出适合大多数马拉松运动员的跑鞋. 然后考虑到跑鞋及运动员的特性会影响马拉松比赛的运动时间,在跑鞋规定的厚度,中底结构材料,鞋跟的角度范围内,从运动员的年龄、性别以及马拉松的距离方面考虑并从损伤和效率方面评估跑鞋,得出相应的结论. 再利用 Logistic 回归模型,评估年龄、性别、马拉松距离、速度以及运动员损伤程度等对跑鞋的选择的影响程度.
  问题二分析:
  本题基于有限元模拟的方法,将普通跑鞋中加入碳板元素,并且探讨了不同跑鞋对马拉松运动员消耗能量以及比赛成绩的影响. 首先鉴于不同跑鞋的设计对马拉松运动员产生的影响,进行有限元模拟. 在第一问跑鞋设计的基础上,在鞋底嵌入一块全长、侧剖面形状和外底相同的碳板. 利用 ABAQUS 软件对外底、中底和两种碳纤维板进行了三维建模. 由 SPSS 进行处理统计的数据. 本研究将跑步速度、跑鞋和受试者的因子重复测量方差分析,进而来评价这些因素对生物力学变量的主效应和交互作用. 运用数学软件 SPSS 对不同的跑鞋与心率以及能量消耗量进行回归分析,并且通过了相关性检验. 从拟合的结果中可以看出,碳板跑鞋的设计目的是减少足部运动和冲击负荷的幅度或速率以降低受伤风险,减少能量消耗,进而可以提高运动成绩.
  问题三分析:
  本题基于对能量经济和运动经济的分析,对碳板跑鞋进行优化设计,首先采用 PCA和偏最小二乘对研究数据进行预处理,然后将它与神经网络相结合,以实现模型的建立和训练,为碳板跑鞋的图像提供了最佳的参考组合. 最终我们设计了适用于不同人群不同适用场合的七款不同性能的碳板跑鞋:铲形推进式直碳板超厚底竞速跑鞋、X 形厚底碳板竞速跑鞋、碳纤维 WAVE 波浪板竞速跑鞋、全(半)掌抗扭碳板训练鞋、Y 型复合碳板跑鞋、全掌异构碳板训练鞋、H 形碳板长距离慢跑鞋.

模型假设:

  假设一:本模型涉及相应的统计分析时排除了非生物力学相关的研究.
  假设二:由于表格中数据量大,部分数据偏差不影响模型的真实性,故不考虑建模过程中的误差.
  假设三:假设不考虑计算机拟合和预测数据时产生的误差.
  假设四:假设选取的指标具有典型性,能够全面反映跑鞋以及运动员影响模型的结果.
  假设五:假设模型设计的碳板跑鞋具有很好的代表性

完整论文缩略图

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

部分程序代码:(代码和文档not free)

import numpy as np
def sigmoid(x):
# Sigmoid 激活函数: f(x) = 1 / (1 + e^(-x))
return 1 / (1 + np.exp(-x))
def deriv_sigmoid(x):
# sigmoid 的倒数: f'(x) = f(x) * (1 - f(x))
fx = sigmoid(x)
return fx * (1 - fx)
def mse_loss(y_true, y_pred):
# MSE 损失函数
return ((y_true - y_pred) ** 2).mean()
class OurNeuralNetwork:
def __init__(self):
# 权值矩阵
self.w1 = np.random.normal()
self.w2 = np.random.normal()
self.w3 = np.random.normal()
self.w4 = np.random.normal()
self.w5 = np.random.normal()
self.w6 = np.random.normal()
# 偏置
self.b1 = np.random.normal()
self.b2 = np.random.normal()
self.b3 = np.random.normal()
def feedforward(self, x):
# sum_h1 = self.w1 * x[0] + self.w2 * x[1] + self.b1
# h1 = sigmoid(sum_h1)
#
# sum_h2 = self.w3 * x[0] + self.w4 * x[1] + self.b2
# h2 = sigmoid(sum_h2)
#
# sum_o1 = self.w5 * h1 + self.w6 * h2 + self.b3
# o1 = sigmoid(sum_o1)
# y_pred = o1
# return y_pre
h1 = sigmoid(self.w1 * x[0] + self.w2 * x[1] + self.b1)
h2 = sigmoid(self.w3 * x[0] + self.w4 * x[1] + self.b2)
o1 = sigmoid(self.w5 * h1 + self.w6 * h2 + self.b3)
return o1
# x 是输入数据,这里输入只有两个属性. def train(self, data, all_y_trues):
learn_rate = 0.1
epochs = 1000 # 迭代次数
for epoch in range(epochs):
for x, y_true in zip(data, all_y_trues):
# feed forward
sum_h1 = self.w1 * x[0] + self.w2 * x[1] + self.b1
h1 = sigmoid(sum_h1)
sum_h2 = self.w3 * x[0] + self.w4 * x[1] + self.b2
h2 = sigmoid(sum_h2)
sum_o1 = self.w5 * h1 + self.w6 * h2 + self.b3
o1 = sigmoid(sum_o1)
y_pred = o1
# 计算偏导数. # 对目标函数求导
d_L_d_ypred = -2*(y_true - y_pred)
# # Neuron o1
# d_ypred_d_w5 = h1 * deriv_sigmoid(self.w5 * h1 + self.w6 * h2 +
self.b3)
# d_ypred_d_w6 = h2 * deriv_sigmoid(self.w5 * h1 + self.w6 * h2 +
self.b3)
# d_ypred_d_b3 = deriv_sigmoid(self.w5 * h1 + self.w6 * h2 + self.b3)
#
# d_ypred_d_h1 = self.w5 * deriv_sigmoid(self.w5 * h1 + self.w6 * h2 +
self.b3)
# d_ypred_d_h2 = self.w6 * deriv_sigmoid(self.w5 * h1 + self.w6 * h2 +
self.b3)
#
# # Neuron h1
# d_h1_d_w1 = x[0]*deriv_sigmoid(self.w1*x[0] + self.w2*x[1] +
self.b1)
# d_h1_d_w2 = x[1]*deriv_sigmoid(self.w1*x[0] + self.w2*x[1] +
self.b1)
# d_h1_d_b1 = deriv_sigmoid(self.w1*x[0] + self.w2*x[1] + self.b1)
#
# # Neuron h2
# d_h2_d_w3 = x[0]*deriv_sigmoid(self.w3*x[0] + self.w4*x[1] +
self.b2)
# d_h2_d_w4 = x[1]*deriv_sigmoid(self.w3*x[0] + self.w4*x[1] +
self.b2)
# d_h2_d_b2 = deriv_sigmoid(self.w3*x[0] + self.w4*x[1] + self.b2)
# Neuron o1
d_ypred_d_w5 = h1 * deriv_sigmoid(sum_o1)
d_ypred_d_w6 = h2 * deriv_sigmoid(sum_o1)
d_ypred_d_b3 = deriv_sigmoid(sum_o1)
d_ypred_d_h1 = self.w5 * deriv_sigmoid(sum_o1)
d_ypred_d_h2 = self.w6 * deriv_sigmoid(sum_o1)
# Neuron h1
d_h1_d_w1 = x[0] * deriv_sigmoid(sum_h1)
d_h1_d_w2 = x[1] * deriv_sigmoid(sum_h1)
d_h1_d_b1 = deriv_sigmoid(sum_h1)
# Neuron h2
d_h2_d_w3 = x[0] * deriv_sigmoid(sum_h2)
d_h2_d_w4 = x[1] * deriv_sigmoid(sum_h2)
d_h2_d_b2 = deriv_sigmoid(sum_h2)
# 更新权值和偏置
# Neuron h1
self.w1 -= learn_rate*d_L_d_ypred*d_ypred_d_h1*d_h1_d_w1
self.w2 -= learn_rate*d_L_d_ypred*d_ypred_d_h1*d_h1_d_w2
self.b1 -= learn_rate*d_L_d_ypred*d_ypred_d_h1*d_h1_d_b1
# Neuron h2
self.w3 -= learn_rate*d_L_d_ypred*d_ypred_d_h2*d_h2_d_w3
self.w4 -= learn_rate*d_L_d_ypred*d_ypred_d_h2*d_h2_d_w4
self.b2 -= learn_rate*d_L_d_ypred*d_ypred_d_h2*d_h2_d_b2
# Neuron o1
self.w5 -= learn_rate*d_L_d_ypred*d_ypred_d_w5
self.w6 -= learn_rate*d_L_d_ypred*d_ypred_d_w6
self.b3 -= learn_rate*d_L_d_ypred*d_ypred_d_b3
# 计算误差
if epoch % 10 == 0:
y_preds = np.apply_along_axis(self.feedforward, 1, data)
loss = mse_loss(all_y_trues, y_preds)
print("Epoch %d loss: %.3f" % (epoch, loss))
# 数据集定义
data = np.array([
[-2, -1], # Alice
[25, 6], # Bob
[17, 4], # Charlie
[-15, -6], # Diana
])
all_y_trues = np.array([
1, # Alice
0, # Bob
0, # Charlie
1, # Diana
])
# 模型训练
network = OurNeuralNetwork()
network.train(data, all_y_trues)
全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

这篇关于2023年认证杯SPSSPRO杯数学建模A题(第一阶段)碳板跑鞋全过程文档及程序的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/weixin_43292788/article/details/130805682
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/208933

相关文章

Java程序进程起来了但是不打印日志的原因分析

《Java程序进程起来了但是不打印日志的原因分析》:本文主要介绍Java程序进程起来了但是不打印日志的原因分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java程序进程起来了但是不打印日志的原因1、日志配置问题2、日志文件权限问题3、日志文件路径问题4、程序

Python实现word文档内容智能提取以及合成

《Python实现word文档内容智能提取以及合成》这篇文章主要为大家详细介绍了如何使用Python实现从10个左右的docx文档中抽取内容,再调整语言风格后生成新的文档,感兴趣的小伙伴可以了解一下... 目录核心思路技术路径实现步骤阶段一:准备工作阶段二:内容提取 (python 脚本)阶段三:语言风格调

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

SpringSecurity JWT基于令牌的无状态认证实现

《SpringSecurityJWT基于令牌的无状态认证实现》SpringSecurity中实现基于JWT的无状态认证是一种常见的做法,本文就来介绍一下SpringSecurityJWT基于令牌的无... 目录引言一、JWT基本原理与结构二、Spring Security JWT依赖配置三、JWT令牌生成与

SpringBoot实现微信小程序支付功能

《SpringBoot实现微信小程序支付功能》小程序支付功能已成为众多应用的核心需求之一,本文主要介绍了SpringBoot实现微信小程序支付功能,文中通过示例代码介绍的非常详细,对大家的学习或者工作... 目录一、引言二、准备工作(一)微信支付商户平台配置(二)Spring Boot项目搭建(三)配置文件

SpringSecurity6.0 如何通过JWTtoken进行认证授权

《SpringSecurity6.0如何通过JWTtoken进行认证授权》:本文主要介绍SpringSecurity6.0通过JWTtoken进行认证授权的过程,本文给大家介绍的非常详细,感兴趣... 目录项目依赖认证UserDetailService生成JWT token权限控制小结之前写过一个文章,从S

Java利用docx4j+Freemarker生成word文档

《Java利用docx4j+Freemarker生成word文档》这篇文章主要为大家详细介绍了Java如何利用docx4j+Freemarker生成word文档,文中的示例代码讲解详细,感兴趣的小伙伴... 目录技术方案maven依赖创建模板文件实现代码技术方案Java 1.8 + docx4j + Fr

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

详解C#如何提取PDF文档中的图片

《详解C#如何提取PDF文档中的图片》提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使用,下面我们就来看看如何使用C#通过代码从PDF文档中提取图片吧... 当 PDF 文件中包含有价值的图片,如艺术画作、设计素材、报告图表等,提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使

springboot security使用jwt认证方式

《springbootsecurity使用jwt认证方式》:本文主要介绍springbootsecurity使用jwt认证方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录前言代码示例依赖定义mapper定义用户信息的实体beansecurity相关的类提供登录接口测试提供一