本文主要是介绍ICCV2023领域泛化Domain Generalization相关论文,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
Domain Generalization即领域泛化,是近些年比较前沿的方向之一,顶会论文比较多。
Domain generalization deals with a challenging setting where one or several different but related domain(s) are given, and the goal is to learn a model that can generalize to an unseen test domain.
TKDE2022上有一篇综述论文,可以用于了解该方向的整体情况。
Generalizing to Unseen Domains: A Survey on Domain Generalization
paper链接:https://arxiv.org/abs/2103.03097
以下列出今年ICCV上相关的论文,可用于跟踪前沿研究方向。
- Cross Contrasting Feature Perturbation for Domain Generalization
- Domain Generalization via Rationale Invariance
- Flatness-Aware Minimization for Domain Generalization
- Texture Learning Domain Randomization for Domain Generalized Segmentation
- Domain Generalization Guided by Gradient Signal to Noise Ratio of Parameters
- Adversarial Bayesian Augmentation for Single-Source Domain Generalization
- Activate and Reject: Towards Safe Domain Generalization under Category Shift
- Generalizable Decision Boundaries: Dualistic Meta-Learning for Open Set Domain Generalization
- EV-DG: Cross-Modal Learning under Bird's-Eye View for Domain Generalization of 3D Semantic Segmentation
- A Sentence Speaks a Thousand Images: Domain Generalization through Distilling CLIP with Language Guidance
- PromptStyler: Prompt-driven Style Generation for Source-free Domain Generalization
- Domain Generalization of 3D Semantic Segmentation in Autonomous Driving
- Domain Generalization via Balancing Training Difficulty and Model Capability
- Understanding Hessian Alignment for Domain Generalization
- DandelionNet: Domain Composition with Instance Adaptive Classification for Domain Generalization
- DomainDrop: Suppressing Domain-Sensitive Channels for Domain Generalization
- iDAG: Invariant DAG Searching for Domain Generalization
- PASTA: Proportional Amplitude Spectrum Training Augmentation for Syn-to-Real Domain Generalization
- Towards Unsupervised Domain Generalization for Face Anti-Spoofing
这篇关于ICCV2023领域泛化Domain Generalization相关论文的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!