本文主要是介绍1.1 向量与线性组合,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
一、向量的基础知识
两个独立的数字 v 1 v_1 v1 和 v 2 v_2 v2,将它们配对可以产生一个二维向量 v \boldsymbol{v} v: 列向量 v v = [ v 1 v 2 ] v 1 = v 的第一个分量 v 2 = v 的第二个分量 \textbf{列向量}\,\boldsymbol v\kern 10pt\boldsymbol v=\begin{bmatrix}v_1\\v_2\end{bmatrix}\kern 10pt\begin{matrix}v_1=\boldsymbol v\,的第一个分量\\v_2=\boldsymbol v\,的第二个分量\end{matrix} 列向量vv=[v1v2]v1=v的第一个分量v2=v的第二个分量这里将 v \boldsymbol v v 写成一列(column),而不是一行(row),单一的字母 v \boldsymbol v v(粗斜体字)表示这一对数字 v 1 v_1 v1 与 v 2 v_2 v2(浅色斜体字)。
向量的一个基础运算是向量的加法,即将两个向量的每个分量分别相加: 向量加法 v = [ v 1 v 2 ] 与 w = [ w 1 w 2 ] 相加得到 v + w = [ v 1 + w 1 v 2 + w 2 ] \textbf{向量加法}\kern 10pt\boldsymbol v=\begin{bmatrix}v_1\\v_2\end{bmatrix}\kern 5pt与\kern 5pt\boldsymbol w=\begin{bmatrix}w_1\\w_2\end{bmatrix}\kern 5pt相加得到\kern5pt\boldsymbol v+\boldsymbol w=\begin{bmatrix}v_1+w_1\\v_2+w_2\end{bmatrix} 向量加法v=[v1v2]与w=[w1w2]相加得到v+w=[v1+w1v2+w2]减法同理, v − w \boldsymbol v-\boldsymbol w v−w 的分量是 v 1 − w 1 v_1-w_1 v1−w1 与 v 2 − w 2 v_2-w_2 v2−w2。
向量的另一个基础运算是数乘(scalar multiplication),一个向量可以和任意数 c c c 相乘,就是用 c c c 去乘这个向量的每个分量: 数乘 2 v = [ 2 v 1 2 v 2 ] = v + v , − v = [ − v 1 − v 2 ] \textbf{数乘}\kern 10pt2\boldsymbol v=\begin{bmatrix}2v_1\\2v_2\end{bmatrix}=\boldsymbol v+\boldsymbol v,-\boldsymbol v=\begin{bmatrix}-v_1\\-v_2\end{bmatrix} 数乘2v=[2v12v2]=v+v,−v=[−v1−v2] c v c\boldsymbol v cv 的分量是 c v 1 cv_1 cv1 与 c v 2 cv_2 cv2,数字 c c c 称为 “数量”(或纯量 scalar)。
需要注意的是: − v -\boldsymbol v −v 与 v \boldsymbol v v 的和(sum)是零向量,以粗体 0 \boldsymbol 0 0 表示,与一般的数字 0 0 0 不同,向量 0 \boldsymbol 0 0 的分量是 0 0 0 与 0 0 0。
线性代数就是建立在 v + w \boldsymbol v+\boldsymbol w v+w 与 c v c\boldsymbol v cv 与 d w d\boldsymbol w dw 的运算 —— 向量的加法与数乘。
二、线性组合
将向量的加法与数乘相结合可以产生 v \boldsymbol v v 与 w \boldsymbol w w 的 “线性组合”。用 c c c 乘 v \boldsymbol v v 与 d d d 乘 w \boldsymbol w w,然后相加得到 c v + d w c\boldsymbol v+d\boldsymbol w cv+dw。 c v 与 d w 的和是 线性组合 c v + d w c\boldsymbol v\,与\,d\boldsymbol w\,的和是\kern 10pt\colorbox{cyan}{$线性组合\,\ c\boldsymbol v+d\boldsymbol w$} cv与dw的和是线性组合 cv+dw四种特殊的线性组合:和、差、零、数乘 c v c\boldsymbol v cv:
1 v + 1 w = 向量的和,如图 1.1 a 1\boldsymbol v+1\boldsymbol w=向量的和,如图1.1a 1v+1w=向量的和,如图1.1a 1 v − 1 w = 向量的差,如图 1.1 b 1\boldsymbol v-1\boldsymbol w=向量的差,如图1.1b 1v−1w=向量的差,如图1.1b 0 v + 0 w = 零向量 0\boldsymbol v+0\boldsymbol w=\textbf{零向量}\kern 56pt 0v+0w=零向量 c v + 0 w = 沿着 v 方向的向量 c v c\boldsymbol v+0\boldsymbol w=沿着\,\boldsymbol v 方向的向量\,c\boldsymbol v cv+0w=沿着v方向的向量cv零向量永远是可能的组合(只要系数都为零),向量的 “空间” 都包含零向量。从大局上看,线性代数的工作就是取得 v \boldsymbol v v 和 w \boldsymbol w w 所有的线性组合。
对于代数来说,我们只需要向量的分量(如 4 4 4 和 2 2 2)。向量也可以画在图形上,向量 v \boldsymbol v v 由箭头表示,箭头向右横跨 v 1 = 4 v_1=4 v1=4 个单位,再往上走 v 2 = 2 v_2=2 v2=2 个单位,终点的坐标等于 ( 4 , 2 ) (4,2) (4,2)。这个点就是向量的另外一种表示法。向量 v \boldsymbol v v 可以用三种方式来描述: 向量 v 的表示法 两个数字 由 ( 0 , 0 ) 出发的箭头 平面上的点 向量\,\boldsymbol v\,的表示法\kern 10pt\colorbox{cyan}{两个数字}\,\,\colorbox{cyan}{由$(0,0)$出发的箭头}\,\,\colorbox{cyan}{平面上的点} 向量v的表示法两个数字由(0,0)出发的箭头平面上的点我们用数字做加法,用箭头可视化 v + w \boldsymbol v+\boldsymbol w v+w:
先沿着 v \boldsymbol v v 再沿着 w \boldsymbol w w 前进,或者沿着 v + w \boldsymbol v+\boldsymbol w v+w 走对角线;也可以先沿着 w \boldsymbol w w 再沿着 v \boldsymbol v v。换言之, w + v \boldsymbol w+\boldsymbol v w+v 与 v + w \boldsymbol v+\boldsymbol w v+w 的答案相同。沿着平行四边形(本例是矩形)存在不同的前进方向。
三、三维向量
有两个分量的向量对应到 x y xy xy 平面上的一个点, v \boldsymbol v v 的分量就是点的坐标: x = v 1 x=v_1 x=v1, y = v 2 y=v_2 y=v2。向量从 ( 0 , 0 ) (0,0) (0,0) 出发,箭头在 ( v 1 , v 2 ) (v_1,v_2) (v1,v2) 结束。
如果向量有三个分量,那么就对应三维的 x y z xyz xyz 空间中的一点。下面的列向量就有三个分量: v = [ 1 1 − 1 ] , w = [ 2 3 4 ] , v + w = [ 3 4 3 ] \boldsymbol v=\begin{bmatrix}1\\1\\-1\end{bmatrix},\boldsymbol w=\begin{bmatrix}2\\3\\4\end{bmatrix},\boldsymbol v+\boldsymbol w=\begin{bmatrix}3\\4\\3\end{bmatrix} v= 11−1 ,w= 234 ,v+w= 343 向量 v \boldsymbol v v 对应到三维空间的一个箭头,通常由原点出发,原点即 x y z xyz xyz 轴的交点,其坐标为 ( 0 , 0 , 0 ) (0,0,0) (0,0,0),箭头的终点坐标是 v 1 v_1 v1, v 2 v_2 v2, v 3 v_3 v3。三维向量同样有三种表示方式:列向量,原点出发的箭头与箭头的终点(空间中一点)。
注意,平面向量 ( x , y ) (x,y) (x,y) 与三维空间的 ( x , y , 0 ) (x,y,0) (x,y,0) 是不同的。
v = [ 1 1 − 1 ] 也可以写成 v = ( 1 , 1 , − 1 ) \boldsymbol v=\begin{bmatrix}1\\1\\-1\end{bmatrix}\,\,也可以写成\,\,\boldsymbol v=(1,1,-1) v= 11−1 也可以写成v=(1,1,−1)写成行形式(在括号中)是为了节省空间,但是 v = ( 1 , 1 , − 1 ) \boldsymbol v=(1,1,-1) v=(1,1,−1) 不是行向量!它仍是列向量,与行向量 [ 1 1 − 1 ] [1\kern 6pt1\,-1] [11−1] 是不同的,尽管它们都具有三个分量。这里 1 × 3 1\times3 1×3 的行向量是 3 × 1 3\times1 3×1 的列向量 v \boldsymbol v v 的 “转置”(transpose)。
三维空间中, v + w \boldsymbol v+\boldsymbol w v+w 仍然是每次计算一个分量,向量的和的分量是 v 1 + w 1 v_1+w_1 v1+w1, v 2 + w 2 v_2+w_2 v2+w2 和 v 3 + w 3 v_3+w_3 v3+w3,同理可以推出 4 4 4 维直至 n n n 维空间中向量的加法。当 w \boldsymbol w w 从 v \boldsymbol v v 的终点出发,则第三边为 v + w \boldsymbol v+\boldsymbol w v+w,平行四边形的另一个环绕方向是 w + v \boldsymbol w+\boldsymbol v w+v。这四个边是在同一平面的,向量的和 v + w − v − w \boldsymbol v+\boldsymbol w-\boldsymbol v-\boldsymbol w v+w−v−w 走完一圈产生零向量。
三维空间三个向量的线性组合, u + 4 v − 2 w \boldsymbol u+4\boldsymbol v-2\boldsymbol w u+4v−2w:分别用 1 1 1, 4 4 4, − 2 -2 −2 乘三个向量再相加的线性组合 [ 1 0 3 ] + 4 [ 1 2 1 ] − 2 [ 2 3 − 1 ] = [ 1 2 9 ] \begin{bmatrix}1\\0\\3\end{bmatrix}+4\begin{bmatrix}1\\2\\1\end{bmatrix}-2\begin{bmatrix}2\\3\\-1\end{bmatrix}=\begin{bmatrix}1\\2\\9\end{bmatrix} 103 +4 121 −2 23−1 = 129
四、重要问题
一个向量 u \boldsymbol u u,唯一的线性组合是 c u c\boldsymbol u cu。对于两个向量,线性组合是 c u + d v c\boldsymbol u+d\boldsymbol v cu+dv。对于三个向量,线性组合是 c u + d v + e w c\boldsymbol u+d\boldsymbol v+e\boldsymbol w cu+dv+ew。对于每个 c c c、 d d d、 e e e,假设 u \boldsymbol u u, v \boldsymbol v v, w \boldsymbol w w 是三维空间中的向量:
(1)所有 c u c\boldsymbol u cu 的组合,图形是什么?
(2)所有 c u + d v c\boldsymbol u+d\boldsymbol v cu+dv 的组合,图形是什么?
(3)所有 c u + d v + e w c\boldsymbol u+d\boldsymbol v+e\boldsymbol w cu+dv+ew 的组合,图形是什么?
上述的答案都与 u \boldsymbol u u、 v \boldsymbol v v、 w \boldsymbol w w 有关,若它们均为零向量,所有的线性组合都是零。如果它们都是典型的非零向量(随机选定分量,即它们两两不平行,三个向量不共面):
(1)所有 c u c\boldsymbol u cu 的组合形成一条过原点(0,0,0)的直线。
(2)所有的 c u + d v c\boldsymbol u+d\boldsymbol v cu+dv 的组合形成一个 过(0,0,0)的平面。
(3)所有的 c u + d v + e w c\boldsymbol u+d\boldsymbol v+e\boldsymbol w cu+dv+ew 的组合形成三维空间。
因为当 c c c 为 0 0 0 时,零向量 ( 0 , 0 , 0 ) (0,0,0) (0,0,0) 会在直线上;当 c c c 与 d d d 都为 0 0 0 时,零向量会在平面上。向量 c u c\boldsymbol u cu 形成的直线是无限长(正向与反向)的,三维空间中两个向量的组合,全部 c u + d v c\boldsymbol u+d\boldsymbol v cu+dv 会形成三维空间内一个平面,且过原点;一条直线上的所有 c u c\boldsymbol u cu 加上另一条直线上的所有 d v d\boldsymbol v dv 就会形成 Figure1.3 所示的平面。
当引入第三个向量 w \boldsymbol w w 时,所有的 e w e\boldsymbol w ew 会得到第三条直线。假设第三条直线不在 u \boldsymbol u u 与 v \boldsymbol v v 形成的平面上,则 e w e\boldsymbol w ew 与 c u + d v c\boldsymbol u+d\boldsymbol v cu+dv 的组合可以形成整个三维空间。
典型情况下,我们会得到线、面、然后空间,但是还会有其它可能的情况。若 w \boldsymbol w w 正好等于 c u + d v c\boldsymbol u+d\boldsymbol v cu+dv 时,即第三个向量 w \boldsymbol w w 在前两个向量所形成的平面上,那么 u \boldsymbol u u, v \boldsymbol v v, w \boldsymbol w w 的组合仍然会在 u v \boldsymbol{uv} uv 平面内,也就不能得到整个三维空间。
五、主要内容总结
(1)二维空间的向量 v \boldsymbol v v 由两个分量 v 1 v_1 v1 和 v 2 v_2 v2。
(2) v + w = ( v 1 + w 1 , v 2 + w 2 ) \boldsymbol v+\boldsymbol w=(v_1+w_1,v_2+w_2) v+w=(v1+w1,v2+w2), c v = ( c v 1 , c v 2 ) c\boldsymbol v=(cv_1,cv_2) cv=(cv1,cv2),每次计算一个分量。
(3)三个向量 u \boldsymbol u u, v \boldsymbol v v, w \boldsymbol w w 的线性组合是 c u + d v + e w c\boldsymbol u+d\boldsymbol v+e\boldsymbol w cu+dv+ew。
(4)选取所有的 u \boldsymbol u u 或 u \boldsymbol u u, v \boldsymbol v v 或 u \boldsymbol u u, v \boldsymbol v v, w \boldsymbol w w 的线性组合,在三维空间中,典型情况下,会形成一条直线或一个平面或整个空间 R 3 \textbf R^3 R3。
六、例题
【例1】 v = ( 1 , 1 , 0 ) \boldsymbol v=(1,1,0) v=(1,1,0) 和 w = ( 0 , 1 , 1 ) \boldsymbol w=(0,1,1) w=(0,1,1) 的线性组合会形成 R 3 \textbf R^3 R3 中的一个平面,描述这个平面,并找到一个不是 v \boldsymbol v v 与 w \boldsymbol w w 线性组合的向量,即不在该平面上的向量。
解: v \boldsymbol v v 与 w \boldsymbol w w 所形成的平面包含所有的组合 c v + d w c\boldsymbol v+d\boldsymbol w cv+dw,该平面上的向量允许任意和 c c c 和 d d d。 线性组合 c v + d w = c [ 1 1 0 ] + d [ 0 1 1 ] = [ c c + d d ] 形成一个平面 线性组合\kern 3ptc\boldsymbol v+d\boldsymbol w=c\begin{bmatrix}1\\1\\0\end{bmatrix}+d\begin{bmatrix}0\\1\\1\end{bmatrix}=\begin{bmatrix}c\\c+d\\d\end{bmatrix}\kern 3pt形成一个平面 线性组合cv+dw=c 110 +d 011 = cc+dd 形成一个平面可以发现其第二分量 c + d c+d c+d 为第一分量与第三分量之和。 ( 1 , 2 , 3 ) (1,2,3) (1,2,3) 即不在这个平面上,这是因为 2 ≠ 1 + 3 2\neq1+3 2=1+3。
【例2】 v = ( 1 , 0 ) \boldsymbol v=(1,0) v=(1,0) 与 w = ( 0 , 1 ) \boldsymbol w=(0,1) w=(0,1),描述所有的 c v c\boldsymbol v cv 点。
(1)当 c c c 为任意整数时;
(2)当 c c c 非负数时, c ≥ 0 c\geq0 c≥0。
再将(1)(2)得到的 c v c\boldsymbol v cv 加上所有的 d w d\boldsymbol w dw,描述所有的 c v + d w c\boldsymbol v+d\boldsymbol w cv+dw。
解:(1)当 c c c 为任意整数时,向量 c v = ( c , 0 ) c\boldsymbol v=(c,0) cv=(c,0) 是沿着 x x x 轴( v \boldsymbol v v 的方向)的等距点,包含 ( − 2 , 0 ) (-2,0) (−2,0), ( − 1 , 0 ) (-1,0) (−1,0), ( 0 , 0 ) (0,0) (0,0), ( 1 , 0 ) (1,0) (1,0), ( 2 , 0 ) (2,0) (2,0)。
(2)当 c ≥ 0 c\geq0 c≥0 时,向量 c v c\boldsymbol v cv 形成一条半线,即 x x x 正半轴。这条线从 ( 0 , 0 ) (0,0) (0,0) 开始,此时 c = 0 c=0 c=0。包含点 ( 100 , 0 ) (100,0) (100,0) 与 ( π , 0 ) (π,0) (π,0),但不包含 ( − 100 , 0 ) (-100,0) (−100,0)。
(1’)加上所有的向量 d w = ( 0 , d ) d\boldsymbol w=(0,d) dw=(0,d),会在这些等距点 c v c\boldsymbol v cv 上放置一条垂直(vertical)线,将会得到无数条(全部整数 c c c,任意的 d d d)平行线。
(2’)加上所有的向量 d w = ( 0 , d ) d\boldsymbol w=(0,d) dw=(0,d),会在半线上的每一个 c v c\boldsymbol v cv 上放置一条垂直线,将会得到一个半平面, x y xy xy 平面的右半部分包括任意的 x ≥ 0 x\geq0 x≥0 和任意的 y y y。
【例3】求出 c c c 和 d d d 的两个方程,使得线性组合 c v + d w = b c\boldsymbol v+d\boldsymbol w=\boldsymbol b cv+dw=b: v = [ 2 − 1 ] , w = [ − 1 2 ] , b = [ 1 0 ] \boldsymbol v=\begin{bmatrix}2\\-1\end{bmatrix},\boldsymbol w=\begin{bmatrix}-1\\2\end{bmatrix},\boldsymbol b=\begin{bmatrix}1\\0\end{bmatrix} v=[2−1],w=[−12],b=[10]
解: 在应用数学中,很多问题都有两个部分:
- 建模(modeling)部分:利用一些方程式来表述问题。
- 计算(computational)部分:利用快速且正确的算法求解方程组。
这里仅讨论第一部分,使用方程组表示。这里可以使用一个线性代数的基础模型: 求 n 个数值 c 1 , ⋯ , c n ,使得 c 1 v + ⋯ c n v n = b 求\,n\,个数值\,c_1,\cdots,c_n,使得\,\,c_1\boldsymbol v+\cdots c_n\boldsymbol v_n=\boldsymbol b 求n个数值c1,⋯,cn,使得c1v+⋯cnvn=b当 n = 2 n=2 n=2 时即为此例题的模型。 向量方程式 c v + d w c [ 2 − 1 ] + d [ − 1 2 ] = [ 1 0 ] 向量方程式 \kern 4ptc\boldsymbol v+d\boldsymbol w\kern 10ptc\begin{bmatrix}2\\-1\end{bmatrix}+d\begin{bmatrix}-1\\2\end{bmatrix}=\begin{bmatrix}1\\0\end{bmatrix} 向量方程式cv+dwc[2−1]+d[−12]=[10]可以得到两个一般方程式: { 2 c − d = 1 − c + 2 d = 1 \left\{\begin{matrix}2c-d=1\\-c+2d=1\end{matrix}\right. {2c−d=1−c+2d=1每个方程式产生一条直线,两条直线相交可以解得 c = 2 / 3 c=2/3 c=2/3, d = 1 / 3 d=1/3 d=1/3。
这篇关于1.1 向量与线性组合的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!