本文主要是介绍STM32 Systick滴答定时器与HAL_Delay实现分析及微妙级延时实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
文章目录
- 1- Systick滴答定时器
- 2- HAL_Init()初始化配置使能systick(4MHZ)
- 3- SystemClock_Config()使能外部晶振修改systick时钟源为80MHZ
- 4- Systick如何实现中断处理
- 5- HAL_Delay()实现原理分析
- 6- 微妙级延时实现
1- Systick滴答定时器
Systick是一个24位的向下递的计数器,每当Systick从时钟源到来一个时钟,其值就会减1,而一般我们将Systick的时钟源设置为系统时钟HCLK(80MHZ)(STM32中为80MHZ)这样也就意味着每过1/80M秒Systick里的计数器将会减1,当重装载数值寄存器里的值递减为0的时候,系统定时器就会产生一次中断,这样就有时间了。之后CPU自动重新装载计数器值并逐渐递减循环往复。
这样讲不怎么听得懂,我们需要了解systick是怎么工作的来进一步了解。
2- HAL_Init()初始化配置使能systick(4MHZ)
最开始CPU是没有使能的,用的是系统的内部高速晶振MSI先工作,也就是4MHZ。HAL_Init()函数中也就是使用的内部晶振(4MHZ)使能,在调用下一个函数SystemClock_Config之后使用的就是外部晶振80MHZ了。并且也会修改systick也使用80MHZ的时钟源。
在main()函数里我们可以看见HAL_Init()函数。
进入函数我们可以看见最后调用了HAL_InitTick()函数
再进入HAL_InitTick()这个函数中我们需要关注的是这个函数HAL_SYSTICK_Config(),也就是怎么样计算的:
4000 000 / 1000 / 1:表示从4000减到0代表1ms
4000 000 / 1000 / 10:表示从4000减到0代表10ms
4000 000 / 1000 / 100:表示从4000减到0代表100ms
HAL_SYSTICK_Config(SystemCoreClock / (1000U / (uint32_t)uwTickFreq
uint32_t SystemCoreClock = 4000000U;// 4MHZ
HAL_TickFreqTypeDef uwTickFreq = HAL_TICK_FREQ_DEFAULT; /* 1KHz 1ms */
typedef enum
{HAL_TICK_FREQ_10HZ = 100U,//100msHAL_TICK_FREQ_100HZ = 10U,//10msHAL_TICK_FREQ_1KHZ = 1U,HAL_TICK_FREQ_DEFAULT = HAL_TICK_FREQ_1KHZ //1ms
} HAL_TickFreqTypeDef;
3- SystemClock_Config()使能外部晶振修改systick时钟源为80MHZ
当然,我们不能一直使用内部晶振,因为这个不稳定,还是需要外部晶振使能来使用80MHZ的时钟源。
进入SystemClock_Config()函数中,我们可以看见在最后调用了HAL_RCC_ClockConfig配置systick
在HAL_RCC_ClockConfig最后我们可以看见,将全局变量SystemCoreClock设置为80MHZ,并且调用HAL_InitTick(),这样systick的时钟源就变成了80MHZ了。
/* Update the SystemCoreClock global variable *//*更新SystemCoreClock全局变量设置为80MHZ*/SystemCoreClock = HAL_RCC_GetSysClockFreq() >> (AHBPrescTable[READ_BIT(RCC->CFGR, RCC_CFGR_HPRE) >> RCC_CFGR_HPRE_Pos] & 0x1FU);/* Configure the source of time base considering new system clocks settings*//*考虑新的系统时钟设置,配置时间基准的来源*/status = HAL_InitTick(uwTickPrio);
4- Systick如何实现中断处理
80 000 000 / 1000 / 1表示: 下降80 000次代表1ms,也就意味着产生一次中断,会触发中断处理程序,执行SysTick_Handler函数。
SysTick_Handler()函数调用了HAL_IncTick()函数。
void SysTick_Handler(void)
{/* USER CODE BEGIN SysTick_IRQn 0 *//* USER CODE END SysTick_IRQn 0 */HAL_IncTick();/* USER CODE BEGIN SysTick_IRQn 1 *//* USER CODE END SysTick_IRQn 1 */
}
HAL_IncTick()函数中断一次uwTick就+1,代表着程序到目前为止已经执行多少ms了。
__weak void HAL_IncTick(void)
{uwTick += (uint32_t)uwTickFreq;
}
5- HAL_Delay()实现原理分析
这是HAL_Delay()的函数原型:
_weak void HAL_Delay(uint32_t Delay)
{uint32_t tickstart = HAL_GetTick();/*这个就是获取前面已经运行多长时间的值uwTick,假设获取的时间为1000ms*/uint32_t wait = Delay;/*这个就是传进来的参数,假设等于500ms*//* Add a period to guaranty minimum wait 判断,防止溢出 */if (wait < HAL_MAX_DELAY){wait += (uint32_t)uwTickFreq;/*系统这里默认需要加一,这也是为什么我们的HAL_Delay()函数会多一秒的原因*/}while ((HAL_GetTick() - tickstart) < wait)/*比较知道我获取的新的时间-1000ms=501ms的时候我就可以退出循环了,就等于是在这里停下501ms*/{}
}
这样就实现了定时的功能。
6- 微妙级延时实现
HAL 库函数中有函数HAL_Delay()进行毫秒级的延时,但是在实际的开发中有时需要进行较为准确的微秒级别延。本章将采用一个通用定时器TIM6实现微秒级别的延时。
STM32L433除了通用的Systick定时器以外,另外还有6个定时器: TIM1、TIM2、TIM6、TIM7、TIM15、TIM16。TIM6、TIM7 是两个16位的自装载基本定时器,它们只能作定时使用,而TIM1、TIM2、TIM15、TIM16则是通用高级定时器,除了定时功能以外还能作PWM输出。
接下来我们将选择基本定时TIM6来实现us级的定时功能。
配置预分频: TIM6的输入时钟为APB1时钟80MHz,这个速率对定时器来说实在太快,这时需要对它做个预分频:
CK_CNT = TIMxCLK/(PSC+1)=80MHz/(80-1+1)=1MHz;
微秒延时配置:通过修改TIM6定时器的ARR(自动重装载寄存)的值,就可以配置定时器的超时时间:
ARR=1/1MHz = lus
在tim.c中添加代码:
void delay_us(uint16_t us)
{uint16_t differ = 60000-us;HAL_TIM_Base_Start(&htim6);__HAL_TIM_SET_COUNTER(&htim6, differ);while( differ < 60000 ){differ = __HAL_TIM_GET_COUNTER(&htim6);}HAL_TIM_Base_Stop(&htim6);
}
/* USER CODE END 1 */
在tim.h在中添加头文件:
/* USER CODE BEGIN Prototypes */
extern void delay_us(uint16_t us);
/* USER CODE END Prototypes */
最后我们来用LED灯来调试一下:
/* USER CODE BEGIN WHILE */sysled_hearbeat();while (1){/* USER CODE END WHILE *//* USER CODE BEGIN 3 */int i;turn_led(RedLed, ON);for(i=0; i<10; i++){delay_us(5000);}turn_led(RedLed, OFF);for(i=0; i<10; i++){delay_us(5000);}}/* USER CODE END 3 */
}
烧录调试的话大概是1秒闪烁一次。
如有错误还请指出~
这篇关于STM32 Systick滴答定时器与HAL_Delay实现分析及微妙级延时实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!