STM32 Systick滴答定时器与HAL_Delay实现分析及微妙级延时实现

2023-10-13 12:59

本文主要是介绍STM32 Systick滴答定时器与HAL_Delay实现分析及微妙级延时实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 1- Systick滴答定时器
    • 2- HAL_Init()初始化配置使能systick(4MHZ)
    • 3- SystemClock_Config()使能外部晶振修改systick时钟源为80MHZ
    • 4- Systick如何实现中断处理
    • 5- HAL_Delay()实现原理分析
    • 6- 微妙级延时实现


1- Systick滴答定时器

Systick是一个24位的向下递的计数器,每当Systick从时钟源到来一个时钟,其值就会减1,而一般我们将Systick的时钟源设置为系统时钟HCLK(80MHZ)(STM32中为80MHZ)这样也就意味着每过1/80M秒Systick里的计数器将会减1,当重装载数值寄存器里的值递减为0的时候,系统定时器就会产生一次中断,这样就有时间了。之后CPU自动重新装载计数器值并逐渐递减循环往复。
这样讲不怎么听得懂,我们需要了解systick是怎么工作的来进一步了解。


2- HAL_Init()初始化配置使能systick(4MHZ)

最开始CPU是没有使能的,用的是系统的内部高速晶振MSI先工作,也就是4MHZ。HAL_Init()函数中也就是使用的内部晶振(4MHZ)使能,在调用下一个函数SystemClock_Config之后使用的就是外部晶振80MHZ了。并且也会修改systick也使用80MHZ的时钟源。
在这里插入图片描述

在main()函数里我们可以看见HAL_Init()函数。
在这里插入图片描述

进入函数我们可以看见最后调用了HAL_InitTick()函数
在这里插入图片描述

再进入HAL_InitTick()这个函数中我们需要关注的是这个函数HAL_SYSTICK_Config(),也就是怎么样计算的:
4000 000 / 1000 / 1:表示从4000减到0代表1ms
4000 000 / 1000 / 10:表示从4000减到0代表10ms
4000 000 / 1000 / 100:表示从4000减到0代表100ms

HAL_SYSTICK_Config(SystemCoreClock / (1000U / (uint32_t)uwTickFreq
uint32_t SystemCoreClock = 4000000U;// 4MHZ
HAL_TickFreqTypeDef uwTickFreq = HAL_TICK_FREQ_DEFAULT;  /* 1KHz  1ms */
typedef enum
{HAL_TICK_FREQ_10HZ         = 100U,//100msHAL_TICK_FREQ_100HZ        = 10U,//10msHAL_TICK_FREQ_1KHZ         = 1U,HAL_TICK_FREQ_DEFAULT      = HAL_TICK_FREQ_1KHZ  //1ms
} HAL_TickFreqTypeDef;

3- SystemClock_Config()使能外部晶振修改systick时钟源为80MHZ

当然,我们不能一直使用内部晶振,因为这个不稳定,还是需要外部晶振使能来使用80MHZ的时钟源。

在这里插入图片描述
进入SystemClock_Config()函数中,我们可以看见在最后调用了HAL_RCC_ClockConfig配置systick
在这里插入图片描述

在HAL_RCC_ClockConfig最后我们可以看见,将全局变量SystemCoreClock设置为80MHZ,并且调用HAL_InitTick(),这样systick的时钟源就变成了80MHZ了。

/* Update the SystemCoreClock global variable *//*更新SystemCoreClock全局变量设置为80MHZ*/SystemCoreClock = HAL_RCC_GetSysClockFreq() >> (AHBPrescTable[READ_BIT(RCC->CFGR, RCC_CFGR_HPRE) >> RCC_CFGR_HPRE_Pos] & 0x1FU);/* Configure the source of time base considering new system clocks settings*//*考虑新的系统时钟设置,配置时间基准的来源*/status = HAL_InitTick(uwTickPrio);

4- Systick如何实现中断处理

80 000 000 / 1000 / 1表示: 下降80 000次代表1ms,也就意味着产生一次中断,会触发中断处理程序,执行SysTick_Handler函数。
在这里插入图片描述

SysTick_Handler()函数调用了HAL_IncTick()函数。

void SysTick_Handler(void)
{/* USER CODE BEGIN SysTick_IRQn 0 *//* USER CODE END SysTick_IRQn 0 */HAL_IncTick();/* USER CODE BEGIN SysTick_IRQn 1 *//* USER CODE END SysTick_IRQn 1 */
}

HAL_IncTick()函数中断一次uwTick就+1,代表着程序到目前为止已经执行多少ms了。

__weak void HAL_IncTick(void)
{uwTick += (uint32_t)uwTickFreq;
}

5- HAL_Delay()实现原理分析

这是HAL_Delay()的函数原型:

_weak void HAL_Delay(uint32_t Delay)
{uint32_t tickstart = HAL_GetTick();/*这个就是获取前面已经运行多长时间的值uwTick,假设获取的时间为1000ms*/uint32_t wait = Delay;/*这个就是传进来的参数,假设等于500ms*//* Add a period to guaranty minimum wait 判断,防止溢出 */if (wait < HAL_MAX_DELAY){wait += (uint32_t)uwTickFreq;/*系统这里默认需要加一,这也是为什么我们的HAL_Delay()函数会多一秒的原因*/}while ((HAL_GetTick() - tickstart) < wait)/*比较知道我获取的新的时间-1000ms=501ms的时候我就可以退出循环了,就等于是在这里停下501ms*/{}
}

这样就实现了定时的功能。

6- 微妙级延时实现

HAL 库函数中有函数HAL_Delay()进行毫秒级的延时,但是在实际的开发中有时需要进行较为准确的微秒级别延。本章将采用一个通用定时器TIM6实现微秒级别的延时。
STM32L433除了通用的Systick定时器以外,另外还有6个定时器: TIM1、TIM2、TIM6、TIM7、TIM15、TIM16。TIM6、TIM7 是两个16位的自装载基本定时器,它们只能作定时使用,而TIM1、TIM2、TIM15、TIM16则是通用高级定时器,除了定时功能以外还能作PWM输出。

接下来我们将选择基本定时TIM6来实现us级的定时功能。
在这里插入图片描述
配置预分频: TIM6的输入时钟为APB1时钟80MHz,这个速率对定时器来说实在太快,这时需要对它做个预分频:
CK_CNT = TIMxCLK/(PSC+1)=80MHz/(80-1+1)=1MHz;
微秒延时配置:通过修改TIM6定时器的ARR(自动重装载寄存)的值,就可以配置定时器的超时时间:
ARR=1/1MHz = lus

在tim.c中添加代码:

void delay_us(uint16_t us)
{uint16_t differ = 60000-us;HAL_TIM_Base_Start(&htim6);__HAL_TIM_SET_COUNTER(&htim6, differ);while( differ < 60000 ){differ = __HAL_TIM_GET_COUNTER(&htim6);}HAL_TIM_Base_Stop(&htim6);
}
/* USER CODE END 1 */

在tim.h在中添加头文件:

/* USER CODE BEGIN Prototypes */
extern void delay_us(uint16_t us);
/* USER CODE END Prototypes */

最后我们来用LED灯来调试一下:

  /* USER CODE BEGIN WHILE */sysled_hearbeat();while (1){/* USER CODE END WHILE *//* USER CODE BEGIN 3 */int i;turn_led(RedLed, ON);for(i=0; i<10; i++){delay_us(5000);}turn_led(RedLed, OFF);for(i=0; i<10; i++){delay_us(5000);}}/* USER CODE END 3 */
}

烧录调试的话大概是1秒闪烁一次。

如有错误还请指出~

这篇关于STM32 Systick滴答定时器与HAL_Delay实现分析及微妙级延时实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/203404

相关文章

springboot+redis实现订单过期(超时取消)功能的方法详解

《springboot+redis实现订单过期(超时取消)功能的方法详解》在SpringBoot中使用Redis实现订单过期(超时取消)功能,有多种成熟方案,本文为大家整理了几个详细方法,文中的示例代... 目录一、Redis键过期回调方案(推荐)1. 配置Redis监听器2. 监听键过期事件3. Redi

SpringBoot全局异常拦截与自定义错误页面实现过程解读

《SpringBoot全局异常拦截与自定义错误页面实现过程解读》本文介绍了SpringBoot中全局异常拦截与自定义错误页面的实现方法,包括异常的分类、SpringBoot默认异常处理机制、全局异常拦... 目录一、引言二、Spring Boot异常处理基础2.1 异常的分类2.2 Spring Boot默

基于SpringBoot实现分布式锁的三种方法

《基于SpringBoot实现分布式锁的三种方法》这篇文章主要为大家详细介绍了基于SpringBoot实现分布式锁的三种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、基于Redis原生命令实现分布式锁1. 基础版Redis分布式锁2. 可重入锁实现二、使用Redisso

SpringBoo WebFlux+MongoDB实现非阻塞API过程

《SpringBooWebFlux+MongoDB实现非阻塞API过程》本文介绍了如何使用SpringBootWebFlux和MongoDB实现非阻塞API,通过响应式编程提高系统的吞吐量和响应性能... 目录一、引言二、响应式编程基础2.1 响应式编程概念2.2 响应式编程的优势2.3 响应式编程相关技术

C#实现将XML数据自动化地写入Excel文件

《C#实现将XML数据自动化地写入Excel文件》在现代企业级应用中,数据处理与报表生成是核心环节,本文将深入探讨如何利用C#和一款优秀的库,将XML数据自动化地写入Excel文件,有需要的小伙伴可以... 目录理解XML数据结构与Excel的对应关系引入高效工具:使用Spire.XLS for .NETC

Nginx更新SSL证书的实现步骤

《Nginx更新SSL证书的实现步骤》本文主要介绍了Nginx更新SSL证书的实现步骤,包括下载新证书、备份旧证书、配置新证书、验证配置及遇到问题时的解决方法,感兴趣的了解一下... 目录1 下载最新的SSL证书文件2 备份旧的SSL证书文件3 配置新证书4 验证配置5 遇到的http://www.cppc

Nginx之https证书配置实现

《Nginx之https证书配置实现》本文主要介绍了Nginx之https证书配置的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起... 目录背景介绍为什么不能部署在 IIS 或 NAT 设备上?具体实现证书获取nginx配置扩展结果验证

SpringBoot整合 Quartz实现定时推送实战指南

《SpringBoot整合Quartz实现定时推送实战指南》文章介绍了SpringBoot中使用Quartz动态定时任务和任务持久化实现多条不确定结束时间并提前N分钟推送的方案,本文结合实例代码给大... 目录前言一、Quartz 是什么?1、核心定位:解决什么问题?2、Quartz 核心组件二、使用步骤1

使用Redis实现会话管理的示例代码

《使用Redis实现会话管理的示例代码》文章介绍了如何使用Redis实现会话管理,包括会话的创建、读取、更新和删除操作,通过设置会话超时时间并重置,可以确保会话在用户持续活动期间不会过期,此外,展示了... 目录1. 会话管理的基本概念2. 使用Redis实现会话管理2.1 引入依赖2.2 会话管理基本操作

Springboot请求和响应相关注解及使用场景分析

《Springboot请求和响应相关注解及使用场景分析》本文介绍了SpringBoot中用于处理HTTP请求和构建HTTP响应的常用注解,包括@RequestMapping、@RequestParam... 目录1. 请求处理注解@RequestMapping@GetMapping, @PostMappin