什么是梯度磁场

2023-10-13 10:30
文章标签 梯度 磁场

本文主要是介绍什么是梯度磁场,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

梯度磁场是位于磁体腔内的几组线圈通过电流而产生,附加在主磁场上,可以增加或减弱主磁场强度,使沿梯度方向的自旋质子具有不同的磁场强度,因而有不同类型的共振频率。

主磁场的产生依赖磁体,可以有永磁,常导,超导;高场强的都是超导。超导其实就是一个大磁铁,一旦电流导入,就无需再提供电流,电流在超低温下几乎不会损耗,强大的电流产生强磁场,平时主要是补充液氦。

梯度磁场是在主磁场上附加的梯度磁场,可以单梯度,可以双梯度,可以在X,Y,Z轴上设立。双梯度就是梯度转换更快。梯度磁场的用处主要在空间定位,包括相位编码及频率编码,可以通过梯度场明确空间上的任意位置。

而RF射频主要是发射信号及采集信号,通过回波信号来了解组织的特性,主要是T1,T2,质子,及流动信号。

综合上述,大磁场就是静态磁场,它的用处是磁化组织,让其有序;梯度场是人为添加,用于空间定位。

通电线圈可以产生磁场,在主磁场上再附加小的磁场,让其形成某个梯度排列的磁场,此时质子的进动频率改变,在Z轴上可以分层,在XY轴上进行平面空间定位。

这篇关于什么是梯度磁场的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/202605

相关文章

✨机器学习笔记(二)—— 线性回归、代价函数、梯度下降

1️⃣线性回归(linear regression) f w , b ( x ) = w x + b f_{w,b}(x) = wx + b fw,b​(x)=wx+b 🎈A linear regression model predicting house prices: 如图是机器学习通过监督学习运用线性回归模型来预测房价的例子,当房屋大小为1250 f e e t 2 feet^

AI学习指南深度学习篇-带动量的随机梯度下降法的基本原理

AI学习指南深度学习篇——带动量的随机梯度下降法的基本原理 引言 在深度学习中,优化算法被广泛应用于训练神经网络模型。随机梯度下降法(SGD)是最常用的优化算法之一,但单独使用SGD在收敛速度和稳定性方面存在一些问题。为了应对这些挑战,动量法应运而生。本文将详细介绍动量法的原理,包括动量的概念、指数加权移动平均、参数更新等内容,最后通过实际示例展示动量如何帮助SGD在参数更新过程中平稳地前进。

AI学习指南深度学习篇-带动量的随机梯度下降法简介

AI学习指南深度学习篇 - 带动量的随机梯度下降法简介 引言 在深度学习的广阔领域中,优化算法扮演着至关重要的角色。它们不仅决定了模型训练的效率,还直接影响到模型的最终表现之一。随着神经网络模型的不断深化和复杂化,传统的优化算法在许多领域逐渐暴露出其不足之处。带动量的随机梯度下降法(Momentum SGD)应运而生,并被广泛应用于各类深度学习模型中。 在本篇文章中,我们将深入探讨带动量的随

什么是GPT-3的自回归架构?为什么GPT-3无需梯度更新和微调

文章目录 知识回顾GPT-3的自回归架构何为自回归架构为什么架构会影响任务表现自回归架构的局限性与双向模型的对比小结 为何无需梯度更新和微调为什么不需要怎么做到不需要 🍃作者介绍:双非本科大四网络工程专业在读,阿里云专家博主,专注于Java领域学习,擅长web应用开发,目前开始人工智能领域相关知识的学习 🦅个人主页:@逐梦苍穹 📕所属专栏:人工智能 🌻gitee地址:x

分布式训练同步梯度出现形状不一致的解决方案

1、问题描述           为了加快大模型的训练速度,采用了分布式训练策略,基于MultiWorkerServerStrategy模式,集群之间采用Ring—Reduce的通信机制,不同节点在同步梯度会借助collective_ops.all_gather方法将梯度进行汇聚收集,汇聚过程出现了: allreduce_1/CollectiveGather_1 Inconsitent out

【机器学习】梯度提升和随机森林的概念、两者在python中的实例以及梯度提升和随机森林的区别

引言 梯度提升(Gradient Boosting)是一种强大的机器学习技术,它通过迭代地训练决策树来最小化损失函数,以提高模型的预测性能 随机森林(Random Forest)是一种基于树的集成学习算法,它通过组合多个决策树来提高预测的准确性和稳定性 文章目录 引言一、梯度提升1.1 基本原理1.1.1 初始化模型1.1.2 迭代优化1.1.3 梯度计算1.1.4模型更新 1.2

jmeter 梯度测试 如何查看TPS、RT指标

TPS= 服务器处理请求总数/花费的总时间 149371 (请求量)÷ 113(1分53秒)=1321/秒 跟汇总报告的吞吐量差不多,可以认为吞吐量=TPS 平均值,中位数,最大值,最小值的单位都是毫秒ms 下载插件梯度插件 https://jmeter-plugins.org/install/Install/ 插件管理器的jar包下载好以后,我们需要把jar包放在lib\ext目录下边

mllib之随机森林与梯度提升树

随机森林和GBTs都是集成学习算法,它们通过集成多棵决策树来实现强分类器。 集成学习方法就是基于其他的机器学习算法,并把它们有效的组合起来的一种机器学习算法。组合产生的算法相比其中任何一种算法模型更强大、准确。 随机森林和梯度提升树(GBTs)。两者之间主要差别在于每棵树训练的顺序。 随机森林通过对数据随机采样来单独训练每一棵树。这种随机性也使得模型相对于单决策树更健壮,且不易在

基于Python的机器学习系列(26):PyTorch中的梯度计算

在本篇中,我们将探讨PyTorch的autograd功能,它为张量操作提供自动微分。我们将学习如何使用torch.autograd工具计算梯度并进行反向传播。 自动微分(Autograd)         PyTorch的autograd包自动计算张量的梯度。当一个张量的.requires_grad属性被设置为True时,PyTorch会追踪该张量的所有操作。在计算完成后,您可

【Get深一度】谐振腔中的电场(E Field[V_per_m])与磁场(H field[A_per_m])分布

1.模式1[TM010模]的电场和磁场分布                  模式1在腔体横截面(XY)上的电磁场分布