FPGA GTH aurora 8b/10b编解码 PCIE 板对板视频传输,提供2套工程源码加QT上位机源码和技术支持

本文主要是介绍FPGA GTH aurora 8b/10b编解码 PCIE 板对板视频传输,提供2套工程源码加QT上位机源码和技术支持,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 1、前言
    • 免责声明
  • 2、我这里已有的 GT 高速接口解决方案
  • 3、GTH 全网最细解读
    • GTH 基本结构
    • GTH 发送和接收处理流程
    • GTH 的参考时钟
    • GTH 发送接口
    • GTH 接收接口
    • GTH IP核调用和使用
  • 4、设计思路框架
    • 视频源选择
    • silicon9011解码芯片配置及采集
    • 动态彩条
    • 视频数据组包
    • GTH aurora 8b/10b
    • 数据对齐
    • 视频数据解包
    • 图像缓存
    • XDMA及其中断模式的使用
    • QT上位机及其源码
  • 5、第1套vivado工程详解
  • 6、第2套vivado工程详解
  • 7、工程移植说明
    • vivado版本不一致处理
    • FPGA型号不一致处理
    • 其他注意事项
  • 8、上板调试验证
    • 光纤连接
    • 静态演示
  • 8、福利:工程代码的获取

1、前言

没玩过GT资源都不好意思说自己玩儿过FPGA,这是CSDN某大佬说过的一句话,鄙人深信不疑。。。
GT资源是Xilinx系列FPGA的重要卖点,也是做高速接口的基础,不管是PCIE、SATA、MAC等,都需要用到GT资源来做数据高速串化和解串处理,Xilinx不同的FPGA系列拥有不同的GT资源类型,低端的A7由GTP,K7有GTX,V7有GTH,更高端的U+系列还有GTY等,他们的速度越来越高,应用场景也越来越高端。。。

本文使用Xilinx的Virtex7 FPGA的GTH资源做视频传输实验,视频源有两种,分别对应开发者手里有没有摄像头的情况,一种是使用笔记本电脑模拟HDMI视频,silicon9011解码输入的HDMI为GRB后供FPGA使用;如果你得手里没有摄像头,或者你得开发板没有HDMI输入接口,则可使用代码内部生成的动态彩条模拟摄像头视频;视频源的选择通过代码顶层的`define宏定义进行,默认使用HDMI输入作为视频源;调用GTH IP核,用verilog编写视频数据的编解码模块和数据对齐模块,使用2块开发板硬件上的2个SFP光口实现数据的收发;本博客提供2套vivado工程源码,2套工程的不同点在于一套是GTH 发送,另一套是GTH 接收,然后解码后视频缓存至DDR3,调用XDMA读取视频,通过PCIE2.0总线将视频发送给电脑,电脑主机运行QT上位机程序实时采集并显示图像;本博客详细描述了FPGA GTH aurora 8b/10b编解码 PCIE 板对板视频传输的设计方案,工程代码可综合编译上板调试,可直接项目移植,适用于在校学生、研究生项目开发,也适用于在职工程师做学习提升,可应用于医疗、军工等行业的高速接口或图像处理领域;
提供完整的、跑通的工程源码和技术支持;
工程源码和技术支持的获取方式放在了文章末尾,请耐心看到最后;

免责声明

本工程及其源码即有自己写的一部分,也有网络公开渠道获取的一部分(包括CSDN、Xilinx官网、Altera官网等等),若大佬们觉得有所冒犯,请私信批评教育;基于此,本工程及其源码仅限于读者或粉丝个人学习和研究,禁止用于商业用途,若由于读者或粉丝自身原因用于商业用途所导致的法律问题,与本博客及博主无关,请谨慎使用。。。

2、我这里已有的 GT 高速接口解决方案

我的主页有FPGA GT 高速接口专栏,该专栏有 GTP 、 GTX 、 GTH 、 GTY 等GT 资源的视频传输例程和PCIE传输例程,其中 GTP基于A7系列FPGA开发板搭建,GTX基于K7或者ZYNQ系列FPGA开发板搭建,GTH基于KU或者V7系列FPGA开发板搭建,GTY基于KU+系列FPGA开发板搭建;以下是专栏地址:
点击直接前往

3、GTH 全网最细解读

关于GTH 介绍最详细的肯定是Xilinx官方的《ug476_7Series_Transceivers》,我们以此来解读:
《ug476_7Series_Transceivers》的PDF文档我已放在了资料包里,文章末尾有获取方式;
我用到的开发板FPGA型号为Xilinx Virtex7 xc7vx690tffg1761-3;带有8路GTH 资源,其中2路连接到了2个SFP光口,每通道的收发速度为 500 Mb/s 到 10.3125 Gb/s 之间。GTH 收发器支持不同的串行传输接口或协议,比如 PCIE 1.1/2.0 接口、万兆网 XUAI 接口、OC-48、串行 RapidIO 接口、 SATA(Serial ATA) 接口、数字分量串行接口(SDI)等等;

GTH 基本结构

Xilinx 以 Quad 来对串行高速收发器进行分组,四个串行高速收发器和一个 COMMOM(QPLL)组成一个 Quad,每一个串行高速收发器称为一个 Channel(通道),下图为四路 GTH 收发器在Virtex7 FPGA 芯片中的示意图:《ug476_7Series_Transceivers》第24页;
在这里插入图片描述
GTH 的具体内部逻辑框图如下所示,它由四个收发器通道 GTHE2_CHANNEL原语 和一个GTHE2_COMMON 原语组成。每路GTHE2_CHANNEL包含发送电路 TX 和接收电路 RX,GTHE2_CHANNEL的时钟可以来自于CPLL或者QPLL,可在IP配置界面里配置;《ug476_7Series_Transceivers》第25页;
在这里插入图片描述
每个 GTHE2_CHANNEL 的逻辑电路如下图所示:《ug476_7Series_Transceivers》第26页;
在这里插入图片描述
GTHE2_CHANNEL 的发送端和接收端功能是独立的,均由 PMA(Physical Media Attachment,物理媒介适配层)和 PCS(Physical Coding Sublayer,物理编码子层)两个子层组成。其中 PMA 子层包含高速串并转换(Serdes)、预/后加重、接收均衡、时钟发生器及时钟恢复等电路。PCS 子层包含8B/10B 编解码、缓冲区、通道绑定和时钟修正等电路。
这里说多了意义不大,因为没有做过几个大的项目是不会理解这里面的东西的,对于初次使用或者想快速使用者而言,更多的精力应该关注IP核的调用和使用,后面我也会重点将到IP核的调用和使用;

GTH 发送和接收处理流程

首先用户逻辑数据经过 8B/10B 编码后,进入一个发送缓存区(Phase Adjust FIFO),该缓冲区主要是 PMA 子层和 PCS 子层两个时钟域的时钟隔离,解决两者时钟速率匹配和相位差异的问题,最后经过高速 Serdes 进行并串转换(PISO),有必要的话,可以进行预加重(TX Pre-emphasis)、后加重。值得一提的是,如果在 PCB 设计时不慎将 TXP 和 TXN 差分引脚交叉连接,则可以通过极性控制(Polarity)来弥补这个设计错误。接收端和发送端过程相反,相似点较多,这里就不赘述了,需要注意的是 RX 接收端的弹性缓冲区,其具有时钟纠正和通道绑定功能。这里的每一个功能点都可以写一篇论文甚至是一本书,所以这里只需要知道个概念即可,在具体的项目中回具体用到,还是那句话:对于初次使用或者想快速使用者而言,更多的精力应该关注IP核的调用和使用。

GTH 的参考时钟

GTH 模块有两个差分参考时钟输入管脚(MGTREFCLK0P/N 和 MGTREFCLK1P/N),作为 GTH 模块的参考时钟源,用户可以自行选择。一般的A7系列开发板上,都有一路 148.5Mhz 的 GTH 参考时钟连接到 MGTREFCLK0上,作为 GTH 的参考时钟。差分参考时钟通过IBUFDS 模块转换成单端时钟信号进入到 GTHE2_COMMOM 的QPLL或CPLL中,产生 TX 和 RX 电路中所需的时钟频率。TX 和 RX 收发器速度相同的话,TX 电路和 RX 电路可以使用同一个 PLL 产生的时钟,如果 TX 和 RX收发器速度不相同的话,需要使用不同的 PLL 时钟产生的时钟。参考时钟这里Xilinx给出的GT参考例程已经做得很好了,我们调用时其实不用修改;GTH 的参考时钟结构图如下:《ug476_7Series_Transceivers》第31页;
在这里插入图片描述

GTH 发送接口

《ug476_7Series_Transceivers》的第107到165页详细介绍了发送处理流程,其中大部分内容对于用户而言可以不去深究,因为手册讲的基本都是他自己的设计思想,留给用户可操作的接口并不多,基于此思路,我们重点讲讲GTH 例化时留给用户的发送部分需要用到的接口;
在这里插入图片描述

用户只需要关心发送接口的时钟和数据即可,GTH 例化模块的这部分接口如下:
在这里插入图片描述
在这里插入图片描述
在代码中我已为你们重新绑定并做到了模块的顶层,代码部分如下:
在这里插入图片描述

GTH 接收接口

《ug476_7Series_Transceivers》的第167到295页详细介绍了发送处理流程,其中大部分内容对于用户而言可以不去深究,因为手册讲的基本都是他自己的设计思想,留给用户可操作的接口并不多,基于此思路,我们重点讲讲GTH 例化时留给用户的发送部分需要用到的接口;
在这里插入图片描述
用户只需要关心接收接口的时钟和数据即可,GTH 例化模块的这部分接口如下:
在这里插入图片描述
在这里插入图片描述
在代码中我已为你们重新绑定并做到了模块的顶层,代码部分如下:
在这里插入图片描述

GTH IP核调用和使用

在这里插入图片描述
有别于网上其他博主的教程,我个人喜欢用如下图的共享逻辑:
在这里插入图片描述
这样选择的好处有两个,一是方便DRP变速,二是便于IP核的修改,修改完IP核后直接编译即可,不再需要打开example工程,再复制下面的一堆文件放到自己的工程什么的,玩儿个GTH需要那么复杂么?
在这里插入图片描述
这里对上图的标号做解释:
1:线速率,根据自己的项目需求来,GTH的范围是0.5到13.1G,由于我的项目是视频传输,所以在GTH的速率范围内均可,本例程选择了5G;
2:参考时钟,这个得根据你的原理图来,可以是80M、125M、148.5M、156.25M等等,我的开发板是156.25M;
4:GTH组的绑定,这个很重要,他的绑定参考依据有两个,已是你的开发板原理图,而是官方的参考资料《ug476_7Series_Transceivers》,官方根据BANK不同将GTH资源分成了多组,由于GT资源是Xilinx系列FPGA的专用资源,占用专用的Bnak,所以引脚也是专用的,那么这些GTH组和引脚是怎么对应的呢?《ug476_7Series_Transceivers》的说明如下:红框内为的我的开发板原理图对应的FPGA引脚;
在这里插入图片描述
我的板子原理图如下:
在这里插入图片描述
在这里插入图片描述
选择外部数据位宽32bit的8b/10b编解码,如下:
在这里插入图片描述
下面这里讲的是K码检测:
在这里插入图片描述
这里选择K28.5,也就是所谓的COM码,十六进制为bc,他的作用很多,可以表示空闲乱序符号,也可以表示数据错位标志,这里用来标志数据错位,8b/10b协议对K码的定义如下:
在这里插入图片描述
下面讲的是时钟矫正,也就是对应GTH内部接收部分的弹性buffer;
在这里插入图片描述
这里有一个时钟频偏的概念,特别是收发双方时钟不同源时,这里设置的频偏为100ppm,规定每隔5000个数据包发送方发送一个4字节的序列,接收方的弹性buffer会根据这4字节的序列,以及数据在buffer中的位置来决定删除或者插入一个4字节的序列中的一个字节,目的是确保数据从发送端到接收端的稳定性,消除时钟频偏的影响;

4、设计思路框架

本博客提供2套vivado工程源码,2组工程的不同点在于一套是GTH 发送,另一套是GTH 接收后PCIE发送电脑端;我这里有2个FPGA开发板,记作开发板1和开发板2,两个开发板上均有HDMI输入和HDMI输出接口,2套vivado工程源码如下极其设计架构如下:
在这里插入图片描述
第1套vivado工程源码:GTH 作为发送端,FPGA开发板1采集视频,然后数据组包,通过GTH 做8b/10b编码后,通过板载的SFP光口的TX端发送出去;视频源有两种,分别对应开发者手里有没有摄像头的情况,一种是使用笔记本电脑模拟HDMI视频,silicon9011解码输入的HDMI为GRB后供FPGA使用;如果你得手里没有摄像头,或者你得开发板没有HDMI输入接口,则可使用代码内部生成的动态彩条模拟摄像头视频;视频源的选择通过代码顶层的`define宏定义进行,默认使用HDMI输入作为视频源;

第2套是GTH 接收,然后解码后视频缓存至DDR3,调用XDMA读取视频,通过PCIE2.0总线将视频发送给电脑,电脑主机运行QT上位机程序实时采集并显示图像;

视频源选择

视频源有两种,分别对应开发者手里有没有摄像头的情况,如果你的手里有摄像头,或者你的开发板有HDMI输入接口,则使用HDMI输入作为视频输入源,我这里用到的是笔记本模拟HDMI视频,silicon9011解码芯片解码HDMI;如果你得手里没有摄像头,或者你得开发板没有HDMI输入接口,则可使用代码内部生成的动态彩条模拟摄像头视频,动态彩条是移动的画面,完全可以模拟视频;默认使用HDMI输入作为视频源;视频源的选择通过代码顶层的`define宏定义进行;如下:
在这里插入图片描述
选择逻辑代码部分如下:
在这里插入图片描述
选择逻辑如下:
当(注释) define COLOR_TEST时,输入源视频是动态彩条;
当(不注释) define COLOR_TEST时,输入源视频是HDMI输入;

silicon9011解码芯片配置及采集

silicon9011解码芯片需要i2c配置才能使用,关于silicon9011解码芯片的配置和使用,请参考我往期的博客,博客地址:点击直接前往
silicon9011解码芯片配置及采集这两部分均用verilog代码模块实现,代码位置如下:
在这里插入图片描述
代码中配置为1920x1080分辨率;

动态彩条

动态彩条可配置为不同分辨率的视频,视频的边框宽度,动态移动方块的大小,移动速度等都可以参数化配置,我这里配置为辨率1920x1080,动态彩条模块代码位置和顶层接口和例化如下:
在这里插入图片描述
在这里插入图片描述

视频数据组包

由于视频需要在GTH中通过aurora 8b/10b协议收发,所以数据必须进行组包,以适应aurora 8b/10b协议标准;视频数据组包模块代码位置如下:
在这里插入图片描述
首先,我们将16bit的视频存入FIFO中,存满一行时就从FIFO读出送入GTH发送;在此之前,需要对一帧视频进行编号,也叫作指令,GTH组包时根据固定的指令进行数据发送,GTH解包时根据固定的指令恢复视频的场同步信号和视频有效信号;当一帧视频的场同步信号上升沿到来时,发送一帧视频开始指令 0,当一帧视频的场同步信号下降沿到来时,发送一帧视频开始指令 1,视频消隐期间发送无效数据 0 和无效数据 1,当视频有效信号到来时将每一行视频进行编号,先发送一行视频开始指令,在发送当前的视频行号,当一行视频发送完成后再发送一行视频结束指令,一帧视频发送完成后,先发送一帧视频结束指令 0,再发送一帧视频结束指令 1;至此,一帧视频则发送完成,这个模块不太好理解,所以我在代码里进行了详细的中文注释,需要注意的是,为了防止中文注释的乱序显示,请用notepad++编辑器打开代码;指令定义如下:
在这里插入图片描述
指令可以任意更改,但最低字节必须为bc;

GTH aurora 8b/10b

这个就是调用GTH做aurora 8b/10b协议的数据编解码,前面已经对GTH做了详细概述,这里不讲;代码位置如下:
在这里插入图片描述

数据对齐

由于GT资源的aurora 8b/10b数据收发天然有着数据错位的情况,所以需要对接受到的解码数据进行数据对齐处理,数据对齐模块代码位置如下:
在这里插入图片描述
我定义的 K 码控制字符格式为:XX_XX_XX_BC,所以用一个rx_ctrl 指示数据是否为 K 码 的 COM 符号;
rx_ctrl = 4’b0000 表示 4 字节的数据没有 COM 码;
rx_ctrl = 4’b0001 表示 4 字节的数据中[ 7: 0] 为 COM 码;
rx_ctrl = 4’b0010 表示 4 字节的数据中[15: 8] 为 COM 码;
rx_ctrl = 4’b0100 表示 4 字节的数据中[23:16] 为 COM 码;
rx_ctrl = 4’b1000 表示 4 字节的数据中[31:24] 为 COM 码;
基于此,当接收到有K码时就对数据进行对齐处理,也就是将数据打一拍,和新进来的数据进行错位组合,这是FPGA的基础操作,这里不再赘述;

视频数据解包

数据解包是数据组包的逆过程,代码位置如下:
在这里插入图片描述
GTH 解包时根据固定的指令恢复视频的场同步信号和视频有效信号;这些信号是作为后面图像缓存的重要信号;
至此,数据进出GTH 部分就已经讲完了,整个过程的框图我在代码中描述了,如下:
在这里插入图片描述

图像缓存

经常看我博客的老粉应该都知道,我做图像缓存的套路是FDMA,他的作用是将图像送入DDR中做3帧缓存再读出显示,目的是匹配输入输出的时钟差和提高输出视频质量,关于FDMA,请参考我之前的博客,博客地址:点击直接前往
这里需要注意的是,我的开发板的DDR3并不是直接贴片的DDR3颗粒,而是SODIMM接口的DDR3内存条,这种情况下,MIG的配置方式是不一样的,基于此,我在之前专门写过一篇博客介绍FPGA MIG 如何配置SODIMM接口的DDR3内存条的博客,可以到那里看看,请参考我之前的博客,博客地址:点击直接前往

XDMA及其中断模式的使用

本设计使用Xilinx官方的XDMA方案搭建基于Xilinx系列FPGA的PCIE通信平台,使用XDMA的中断模式与QT上位机通讯,即QT上位机通过软件中断的方式实现与FPGA的数据交互;XDMA将从SFP接收到的视频从DDR3中读取出来,通过PCIE总线发送给电脑主机,电脑主机运行QT上位机软件,QT软件通过通断方式接收PCIE发来的图像数据并实时显示图像;

本设计的关键在于我们编写了一个 XDMA中断模块。该模块用来配合驱动处理中断,xdma_inter.v 提供了AXI-LITE 接口,上位机通过访问 user 空间地址读写 xdma_inter.v 的寄存器。该 模块 在 user_irq_req_i 输入的中断位,寄存中断位号,并且输出给 XDMA IP ,当上位机的驱动响应中断的时候,在中断里面写 xdma_inter.v 的寄存器,清除已经处理的中断。DMA中断模块代码位置如下:
在这里插入图片描述
XDMA配置为X8模式,5G线速率,如下:
在这里插入图片描述
关于基于XDMA的PCIE应用,请参考我的PCIE通信专栏,专栏地址:点击直接前往

QT上位机及其源码

QT上位机本方案使用 VS2015 + Qt 5.12.10 完成上位机开发软件环境搭建,QT程序调用XDMA官方API采用中断模式实现与FPGA的数据交互,本例程实现的是读写测速,提供QT上位机软件及其源码,路径如下:
在这里插入图片描述
QT源码部分截图如下:
在这里插入图片描述

5、第1套vivado工程详解

开发板FPGA型号:Xilinx–Virtex7–xc7vx690tffg1761-3;
开发环境:Vivado2019.1;
输入:HDMI或者动态彩条,分辨率1920x1080@60Hz;
输出:开发板1的SFP光口的TX接口;
应用:GTH aurora 8b/10b编解码 PCIE 板对板视频传输;
工程代码架构如下:
在这里插入图片描述
综合编译完成后的FPGA资源消耗和功耗预估如下:
在这里插入图片描述

6、第2套vivado工程详解

开发板FPGA型号:Xilinx–Virtex7–xc7vx690tffg1761-3;
开发环境:Vivado2019.1;
输入:开发板2的SFP光口的RX接口;
输出:PCIE 2.0 X8
应用:GTH aurora 8b/10b编解码 PCIE 板对板视频传输;
工程Block Design如下:
在这里插入图片描述
工程代码架构如下:
在这里插入图片描述
综合编译完成后的FPGA资源消耗和功耗预估如下:
在这里插入图片描述

7、工程移植说明

vivado版本不一致处理

1:如果你的vivado版本与本工程vivado版本一致,则直接打开工程;
2:如果你的vivado版本低于本工程vivado版本,则需要打开工程后,点击文件–>另存为;但此方法并不保险,最保险的方法是将你的vivado版本升级到本工程vivado的版本或者更高版本;
在这里插入图片描述
3:如果你的vivado版本高于本工程vivado版本,解决如下:
在这里插入图片描述
打开工程后会发现IP都被锁住了,如下:
在这里插入图片描述
此时需要升级IP,操作如下:
在这里插入图片描述
在这里插入图片描述

FPGA型号不一致处理

如果你的FPGA型号与我的不一致,则需要更改FPGA型号,操作如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
更改FPGA型号后还需要升级IP,升级IP的方法前面已经讲述了;

其他注意事项

1:由于每个板子的DDR不一定完全一样,所以MIG IP需要根据你自己的原理图进行配置,甚至可以直接删掉我这里原工程的MIG并重新添加IP,重新配置;
2:根据你自己的原理图修改引脚约束,在xdc文件中修改即可;
3:纯FPGA移植到Zynq需要在工程中添加zynq软核;

8、上板调试验证

光纤连接

两块板子接法如下:
在这里插入图片描述
在这里插入图片描述

静态演示

下面以第1组vivado工程的两块板子为例展示输出效果:
当GTH运行5G线速率时输出如下:
在这里插入图片描述

8、福利:工程代码的获取

福利:工程代码的获取
代码太大,无法邮箱发送,以某度网盘链接方式发送,
资料获取方式:私,或者文章末尾的V名片。
网盘资料如下:
在这里插入图片描述
在这里插入图片描述

这篇关于FPGA GTH aurora 8b/10b编解码 PCIE 板对板视频传输,提供2套工程源码加QT上位机源码和技术支持的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/200277

相关文章

Python视频处理库VidGear使用小结

《Python视频处理库VidGear使用小结》VidGear是一个高性能的Python视频处理库,本文主要介绍了Python视频处理库VidGear使用小结,文中通过示例代码介绍的非常详细,对大家的... 目录一、VidGear的安装二、VidGear的主要功能三、VidGear的使用示例四、VidGea

基于Qt Qml实现时间轴组件

《基于QtQml实现时间轴组件》时间轴组件是现代用户界面中常见的元素,用于按时间顺序展示事件,本文主要为大家详细介绍了如何使用Qml实现一个简单的时间轴组件,需要的可以参考下... 目录写在前面效果图组件概述实现细节1. 组件结构2. 属性定义3. 数据模型4. 事件项的添加和排序5. 事件项的渲染如何使用

基于Qt开发一个简单的OFD阅读器

《基于Qt开发一个简单的OFD阅读器》这篇文章主要为大家详细介绍了如何使用Qt框架开发一个功能强大且性能优异的OFD阅读器,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 目录摘要引言一、OFD文件格式解析二、文档结构解析三、页面渲染四、用户交互五、性能优化六、示例代码七、未来发展方向八、结论摘要

Java汇编源码如何查看环境搭建

《Java汇编源码如何查看环境搭建》:本文主要介绍如何在IntelliJIDEA开发环境中搭建字节码和汇编环境,以便更好地进行代码调优和JVM学习,首先,介绍了如何配置IntelliJIDEA以方... 目录一、简介二、在IDEA开发环境中搭建汇编环境2.1 在IDEA中搭建字节码查看环境2.1.1 搭建步

python与QT联合的详细步骤记录

《python与QT联合的详细步骤记录》:本文主要介绍python与QT联合的详细步骤,文章还展示了如何在Python中调用QT的.ui文件来实现GUI界面,并介绍了多窗口的应用,文中通过代码介绍... 目录一、文章简介二、安装pyqt5三、GUI页面设计四、python的使用python文件创建pytho

QT实现TCP客户端自动连接

《QT实现TCP客户端自动连接》这篇文章主要为大家详细介绍了QT中一个TCP客户端自动连接的测试模型,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录版本 1:没有取消按钮 测试效果测试代码版本 2:有取消按钮测试效果测试代码版本 1:没有取消按钮 测试效果缺陷:无法手动停

基于Qt实现系统主题感知功能

《基于Qt实现系统主题感知功能》在现代桌面应用程序开发中,系统主题感知是一项重要的功能,它使得应用程序能够根据用户的系统主题设置(如深色模式或浅色模式)自动调整其外观,Qt作为一个跨平台的C++图形用... 目录【正文开始】一、使用效果二、系统主题感知助手类(SystemThemeHelper)三、实现细节

Qt实现文件的压缩和解压缩操作

《Qt实现文件的压缩和解压缩操作》这篇文章主要为大家详细介绍了如何使用Qt库中的QZipReader和QZipWriter实现文件的压缩和解压缩功能,文中的示例代码简洁易懂,需要的可以参考一下... 目录一、实现方式二、具体步骤1、在.pro文件中添加模块gui-private2、通过QObject方式创建

Qt QWidget实现图片旋转动画

《QtQWidget实现图片旋转动画》这篇文章主要为大家详细介绍了如何使用了Qt和QWidget实现图片旋转动画效果,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 一、效果展示二、源码分享本例程通过QGraphicsView实现svg格式图片旋转。.hpjavascript

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用