本文主要是介绍质数距离 - 如何在较合理的时间复杂度内求2e9范围内的质数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
求l、r之间的质数,范围在2e9,但l、r的差值不大,在1e6范围内
先求出 内的质数,然后拿这个指数去筛[l, r]范围内的即可
#include<bits/stdc++.h>
#define IOS ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
#define endl '\n'using namespace std;typedef pair<int, int> PII;
typedef long long ll;
typedef long double ld;const int N = 50010, M = 1000010;int primes[N], cnt;
bool st[M];
int p[M];void init()
{for(int i = 2; i < N; i ++){if(!st[i])primes[cnt ++] = i;for(int j = 0; primes[j] * i < N; j ++){st[primes[j] * i] = true;if(i % primes[j] == 0)break;}}
}int main()
{IOSinit();int cnt_tmp = cnt;ll l, r;while(cin >> l >> r){if(l == 1)l = 2;memset(st, false, sizeof st);cnt = cnt_tmp;for(int i = 0; i < cnt; i ++){ll start = max((ll)primes[i] * 2, (l + primes[i] - 1) / primes[i] * primes[i]);for(ll j = start; j <= r; j += primes[i]){st[j - l] = true;}}cnt = 0;for(int i = 0; i <= r - l; i ++){if(!st[i])p[cnt ++] = i;}if(cnt < 2){cout << "There are no adjacent primes." << endl;continue;}int min1 = 0, min2 = 2e9, max1 = 0, max2 = 0;for(int i = 0; i < cnt - 1; i ++){if(p[i + 1] - p[i] < min2 - min1){min1 = p[i];min2 = p[i + 1];}if(p[i + 1] - p[i] > max2 - max1){max1 = p[i];max2 = p[i + 1];}}cout << min1+l << "," << min2+l << " are closest, " << max1+l << "," << max2+l << " are most distant." << endl;}return 0;
}
要注意的几个点:
1.对于每次筛最少要从primes[i] * 2开始,不能筛到质数
2.在start计算过程中和j+的过程中很容易爆int,注意这部分开ll
3.求大于等于l的第一个p的倍数:(l + p - 1) / p * p
这篇关于质数距离 - 如何在较合理的时间复杂度内求2e9范围内的质数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!