NAST:时间序列预测的非自回归时空Transformer模型

2023-10-12 05:50

本文主要是介绍NAST:时间序列预测的非自回归时空Transformer模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

NAST:时间序列预测的非自回归时空Transformer模型

[Submitted on 10 Feb 2021]

图片

关注人工智能学术前沿 回复 :ts22

5秒免费获取论文pdf文档,及项目源码

 

 

摘要

虽然Transformer在很多领域取得了突破性的成功,特别是在自然语言处理(NLP)领域,但将其应用于时间序列预测仍然是一个巨大的挑战。在时间序列预测中,规范化 Transformer模型的自回归译码不可避免地会引入巨大的累积误差。此外,利用Transformer来处理问题中的时空依赖性仍然面临着很大的困难。为了解决这些限制,本工作首次尝试提出一种用于时间序列预测的非自回归变压器架构,旨在克服标准变压器中的时间延迟和累积误差问题。此外,我们提出了一种新的时空注意机制,通过学习时间影响图来搭建一座桥梁,填补时空注意之间的空白,从而实现时空依赖关系的整体处理。以经验为基础,我们在多种以自我为中心的未来定位数据集上评估了我们的模型,并在实时性和准确性方面展示了最先进的性能。

 

1.介绍

 

考虑到在各个领域中广受赞誉的巨大优势和超越rnn的巨大潜力,Transformer可以成为处理时间序列预测问题的理想候选。

 

关键问题

1.现有的Transformer用于时间序列预测的解码机制,如图1(a)所示,并不直接适用,不够有效

时间序列预测本质上是一个具有连续输入的回归任务,这与具有离散输入的自然语言处理中的分类任务明显不同。因此,典型的自回归(AR)解码不能有效地处理时间序列处理问题,主要是因为前n-1步的预测不能充分避免误差,使得第n步的条件是预测累积误差高,导致不满意的最终预测性能。此外,只使用编码器的方法是AR解码方法的简单变体,利用变压器编码器作为特征提取器和多层感知器(MLP)或卷积层块作为解码器。虽然这种方法可以在一定程度上消除累积错误,但它并不能从强大的注意机制中获益。

2.不同的时间序列数据通常具有很强的空间依赖性,例如交通流和基于骨架的动作序列。如图1(b)所示,在探索Transformer体系结构中空间和时间依赖的建模过程中,以前的工作可以根据它们连接空间和时间信息的不同方式(即并行方式或堆叠方式)分为两类。并行方式分别提取时空特征,然后聚合它们(Plizzari et al., 2020;Aksan等人,2020年)。而堆叠方式交替处理时间和空间相关性(Xu et al., 2020)。我们认为,在联合建模中,它们都没有完整地考虑时空依赖关系,因为在学习和预测空间关注时忽略了时间依赖关系。

图片

 

作者的解决思路

为了解决上述具有挑战性的局限性,我们提出了一种新的时空转换器用于时间序列预测问题。首先,我们设计了一个非自回归(Non-Autoregressive, Non-AR)变压器架构,并提出了一个嵌入式查询生成块(Query Generation Block, QGB)作为该问题的核心模块。QGB在一个步骤内生成查询,查询的长度与目标序列相同。然后,利用生成的查询,我们的时空转换器解码器能够并行地执行预测。这样不仅可以大大避免累积错误,而且解码器可以更有效地从注意机制中获益。此外,相对于现有的并行和堆叠方式,我们提出了一种新的时空注意机制,以一个整体的方式联合建模时空依赖。首先,我们将输入特征嵌入到高维张量中,并沿空间和时间预测空间和时间注意地图。然后,我们对时间注意图进行换位,得到时间影响图,再用时间影响图与空间注意进行产品操作,得到联合学习的整体时空注意图。:

 

 

 

2.模型概述

具体内容涉及到大量公式介绍与推导过程,如果需要,请获取论文资源,自行研究。

关注人工智能学术前沿 回复 :ts22

5秒免费获取论文pdf文档,及项目源码

 

图片

图2。提出的非自回归时空转换器(NAST)的架构说明。与规范的Transformer相比,在编码器和解码器之间插入了一个查询生成块(Query Generation Block, QGB)。采用一种新的时空注意机制对编码器和解码器中的自我注意进行建模和学习,从而对时空依赖性进行整合处理。FC表示全连接网络。

图片

图3。时空注意力块。在该块中,沿输入特征的空间和时间预测空间和时间注意图。然后,对时间注意图进行移位操作,得到时间影响图,再利用时间影响图与空间注意进行产品操作,得到共同学习的时空注意图。

 

3.实验概述

 

数据集

 

NuScenes

作为一个巨大的自动驾驶数据集,NuScenes (Caesar等人,2020)包含1000个场景,每个场景拥有20秒。

SMARTS-EGO

一个名为SMARTS- ego的以自我为中心的大规模未来定位数据集,该数据集包含7700个场景,每个场景拥有10秒的时间。

 

对比模型

为了评估性能,我们将我们提出的模型与一个基于rnn的模型和两个基于transformer的模型进行比较,这两个模型代表了各种先进的方法。

RNN-ED:

姚等(2019a)提出的RNN-ED是一种基于rnn的编码器-解码器模型。我们去掉了它的光流编码分支,保留了所有其他设置。

Transformer:

我们遵循Wu等人(2020)提到的AR方式,将规范Transformer应用于此任务。另外,其他设置与我们的模型相同。

TST-NoLogSparse:

时间序列变压器(Time-Series Transformer, TST)由Li等人(2019)提出。作者只发布NoSparse版本,因此我们在任务中只验证它,所有其他设置都与原始设置相同。

 

实验结果

图片

 

总结

 

本文提出了一种非自回归变压器译码,并设计了一种新的时空注意机制,以联合方式处理时空注意。这是首次尝试将非自回归变压器模型引入具有空间和时间相关性的时间序列预测。实验结果表明,时空注意机制和非自回归解码方式都是必要的和有益的。因此,我们的模型远远优于其他基于transformer的方法,并取得了优于基于rnn的方法的有效性能。对于未来的工作,我们的模型可以作为一个坚实的基线,用Transformer预测时间序列。同时,更多可解释的查询生成方法和时空关注模型仍然是迫切需要的。

这篇关于NAST:时间序列预测的非自回归时空Transformer模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/193703

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

服务器集群同步时间手记

1.时间服务器配置(必须root用户) (1)检查ntp是否安装 [root@node1 桌面]# rpm -qa|grep ntpntp-4.2.6p5-10.el6.centos.x86_64fontpackages-filesystem-1.41-1.1.el6.noarchntpdate-4.2.6p5-10.el6.centos.x86_64 (2)修改ntp配置文件 [r

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

uva 10131 最长子序列

题意: 给大象的体重和智商,求体重按从大到小,智商从高到低的最长子序列,并输出路径。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vect

AI Toolkit + H100 GPU,一小时内微调最新热门文生图模型 FLUX

上个月,FLUX 席卷了互联网,这并非没有原因。他们声称优于 DALLE 3、Ideogram 和 Stable Diffusion 3 等模型,而这一点已被证明是有依据的。随着越来越多的流行图像生成工具(如 Stable Diffusion Web UI Forge 和 ComyUI)开始支持这些模型,FLUX 在 Stable Diffusion 领域的扩展将会持续下去。 自 FLU